Math, asked by prasadaditi301, 17 days ago

A transversal intersects two parallel lines such that the interior angles formed on the same side of it are in the ratio 2:3. What is the difference between the two angles? (A) 36° B) 720 © 108° D) 144°​

Answers

Answered by SatisfiedSoul
106

 \sf \underline{ \underline{Question : }}

A transversal intersects two parallel lines such that the interior angles formed on the same side of it are in the ratio 2:3. What is the difference between the two angles? (A) 36° B) 720° C) 108° D) 144°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \sf \underline{ \underline{Given : }}

  • A transversal intersects two parallel lines.
  • The interior angles formed are in the ratio 2:3

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \sf \underline{ \underline{To  \: Find : }}

  • Difference between the two lines

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \sf \underline{ \underline{Solution : }}

~ Let Us Assume :

  • ➳ Let one of the angles be = 2x
  • ➳ Let the other angle be = 3x

ㅤㅤㅤㅤㅤ_______________________

~ Concept Used :

As sum of interior angles on same side of transversal, intersecting two parallel line is 180°.

ㅤㅤㅤㅤㅤ_______________________

~ Calculating the x :

\sf{{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼\: \:  \:  \:  \:  \: 2x \:  +  \: 3x = 180°  }{ \: }}

\sf{{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼ \:  \:  \:  \: \: 5x = 180° }{ \: }}

\sf{{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼  \:  \:  \:  \:  \: \: x =  \frac{180°}{5}  }{ \: }}

\sf{{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼\:  \:  \:  \:  \:  \:  \: x = 36° }{ \: }}

ㅤㅤㅤㅤㅤ_______________________

~ Finding the two angles :

\sf{{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼ \:  \:  \:  \:  }{ \: 2x = 2 \times 36 = 72°}}

\sf{{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼ \:  \:  \:  \:  }{ \: 3x = 3 \times 36 = 108°}}

ㅤㅤㅤㅤㅤ_______________________

~ Calculating the difference :

 \sf \pink{⇢}\small{\underline{{\boxed{\sf{\red{ Difference = Greater  \: angle - smaller \:  angle }}}}}}

\sf \pink{{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼\:  \:  \:  \:  \:  } \green{ \: 108° - 72°}}

\sf \pink{{  \:  \: \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⟼\:  \:  \:  \:  \:  \:  } \green{ \: 36°}}

ㅤㅤㅤㅤㅤ_______________________

~ Therefore :

The difference between the two angles is (A) 36°.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by мααɴѕí
18

Answer:

Let the angle be 2x and 3x

Sum of angles on the same side of transversal intersecting two parallel lines is 180∘

2x + 3x = 180 \degree \\ 5x = 180\degree \\ x = 36\degree \\ so \: the \: angles \: are \\ 2x = 2 \times 36\degree = 72\degree \\ 3x = 3 \times 36\degree = 108\degree

so the smaller angle is 72°

Similar questions