Physics, asked by Anonymous, 3 months ago

A transverse wave along na string is given by
 \sf y = 2 sin \bigg( 2\pi (3t - x) + \dfrac{\pi}{4}\bigg)
where X and y are in cm and t is in second. the acceleration of a particle located at x = 4cm at t = 1s​

Answers

Answered by BrainlyTwinklingstar
11

Given :

A transverse wave along a string =  \sf y = 2 sin \bigg( 2\pi (3t - x) + \dfrac{\pi}{4}\bigg)

x = 4cm

t = 1 cm

To find :

acceleration of the particle.

Solution :

The acceleration of a particle at displacement is given by a = -ω²y

According to the question,

\sf y = 2 sin \bigg( 6\pi t - 2\pi x + \dfrac{\pi}{4}\bigg)

 \sf \omega = 6\pi t

By substituting all the given values in the formula,

 \dashrightarrow \sf a =  -  \omega ^{2} y

 \dashrightarrow \sf a =   - (6\pi t) ^{2}  \times 2 \: sin \bigg(6\pi t - 2\pi x +  \dfrac{\pi}{4}  \bigg) \\

 \dashrightarrow \sf a = -   72\pi ^{2}  (1)  \times 2 \: sin \bigg(6\pi (1) - 2\pi (4) +  \dfrac{\pi}{4}  \bigg) \\

 \dashrightarrow \sf a =   - 72\pi ^{2}    \times 2 \: sin \bigg(6\pi  - 8\pi  +  \dfrac{\pi}{4}  \bigg) \\

 \dashrightarrow \sf a =   - 72\pi ^{2}    \times 2 \: sin \bigg( - 2\pi+  \dfrac{\pi}{4}  \bigg) \\

 \dashrightarrow \sf a =  -  72\pi ^{2}    \times 2 \: sin \bigg(  \dfrac{ - 8\pi+\pi}{4}  \bigg) \\

 \dashrightarrow \sf a =  -  72\pi ^{2}    \times  \: sin ( - 315) \\

 \dashrightarrow \sf a =  -  72\pi ^{2}    \times  \: ( - sin 45) \\

 \dashrightarrow \sf a =    72\pi ^{2}    \dfrac{1}{ \sqrt{2} }   \\

 \dashrightarrow   \underline{\boxed{\sf a =  36 \sqrt{2}  {\pi}^{ 2 }cms^{ - 2} }} \\

Thus, acceleration of the particle is 36√2 π² cm/

Similar questions