Physics, asked by Kastu5821, 11 months ago

A transverse wave on a stretched string of linear density 3 10^-4 is represented by y=0.2sin(15 x+60 t) the tension in the string is

Answers

Answered by nirman95
39

Answer:

Given:

Wave Equation of a travelling wave as follows ;

y = 0.2 \sin(15x + 60t)

Linear density of the string is :

 \mu = 3 \times  {10}^{ - 4} kg {m}^{ - 1}

To find:

Tension in the string

Concept :

Whenever a transverse pulse flows through a string , we can explain it's movement by perpendicular Oscillation of medium particles.

The wave Velocity can be related to Tension and linear mass density in the following manner :

 \boxed{ \huge{ \red{ \bold{v =  \sqrt{ \dfrac{T}{\mu} } }}}}

Calculation:

From the wave Equation , Velocity of the wave can be calculated as follows :

v =  \dfrac{ \omega}{k}

 =  > v =  \dfrac{60}{15}

 =  > v = 4 \: m {s}^{ - 1}

Now putting all the values in the equation :

 \blue{ \sf{ =  > 4 =  \sqrt{ \dfrac{T}{ \mu} } }}

 \blue{ \sf{ =  > 4 =  \sqrt{ \dfrac{T}{3 \times  {10}^{ - 4} } } }}

 \blue{ \sf{ =  > 16 =  \dfrac{T}{3 \times  {10}^{ - 4} } }}

 \blue{ \sf{  =  > T = 48 \times  {10}^{ - 4} N }}

So final answer :

 \green{ \sf{  \bold{ \huge{T = 48 \times  {10}^{ - 4} N }}}}

Answered by Anonymous
30

\huge\fcolorbox{red}{pink}{Answer}

Given :

 \implies \rm \: transverse \: wave \: equation \\  \\   \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \rm{ \red{y = 0.2 \sin(15x  + 60t) }}} \\  \\  \implies \rm \: linear \: mass \: density \: of \: string \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \rm{ \red{ \mu = 3 \times  {10}^{ - 4} \: \frac{kg}{m}}}}

To Find :

Tension in the string ??

Formula :

Wave velocity is given by...

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dag \:  \underline{ \boxed{ \bold{ \rm{ \pink{V =  \frac{ \omega}{k}}}}}}  \:  \dag

Tension in the string in terms of wave velocity and linear mass density is given by...

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \dag \:  \underline{ \boxed{ \bold{ \rm{ \blue{V =  \sqrt{ \frac{T}{ \mu}}}}}}}  \:  \dag

Calculation :

 \therefore \rm \:  \frac{ \omega}{k}  =  \sqrt{ \frac{T}{ \mu} }  \\  \\  \therefore \rm \:  \frac{60}{15}  =  \sqrt{ \frac{T}{3 \times  {10}^{ - 4} } }  \\  \\  \therefore \rm \: T = 16 \times 3 \times  {10}^{ - 4}  \\  \\  \therefore \:  \underline{ \boxed{ \bold{ \rm{ \orange{T =4.8 \times  {10}^{ - 3}  \: N }}}}} \:  \purple{ \clubsuit}

Similar questions