Math, asked by veergandagalekar, 6 months ago

A traveller walking at 4 kilometres an hour can cover a distance in 2 hours 45 minutes on foot . By a cycle he covers it in only 40 minutes. Find his speed on the cycle?​

Answers

Answered by Anonymous
3

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

  • Speed while walking = 4km/hr

 \:\:

  • Walked for 2hr 45 min

 \:\:

  • Time required to cover same distance while cycling is 40 minutes

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Speed on cycle

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the speed on cycle be "x"

  • Let the distance be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \underline{\bold{\texttt {We know that :}}}

 \:\:

 \bf \dag \ \ Distance = Speed \times Time

 \:\:

Case I [ On foot ]

 \:\:

  • Speed = 4 km/hr

  • Distance = y

  • Time = 2hr 45 minutes

 \:\:

 \sf \longmapsto y = 4 \times 2hr 45 minutes

 \:\:

 \sf \longmapsto y = 4 \times 2 \dfrac { 3 } { 4 }

 \:\:

 \sf \longmapsto y = 4 \times \dfrac { 11 } { 4 }

 \:\:

 \sf \dashrightarrow y = 11 km

 \:\:

  • Hence distance will be 11 km

 \:\:

Case II [ On cycle ]

 \:\:

  • Speed = x

  • Distance = y

  • Time = 40 minutes

 \:\:

 \sf \longmapsto y = x \times 40 minutes

 \:\:

 \sf \longmapsto y = x \times \dfrac { 2 } { 3 }

 \:\:

 \sf \longmapsto 11 = x \times \dfrac { 2 } { 3 }

 \:\:

 \sf \longmapsto 33 = 2x

 \:\:

 \sf \longmapsto x = \dfrac { 33 } { 2 }

 \:\:

 \bf \dashrightarrow x = 16.5 km/hr

 \:\:

  • Hence speed while cycling must be 16.5 km/hr to cover the same distance while walking.
Similar questions