A traversal passes through two parallel lines . Prove that bisectors of alternate angles are equal .
Answers
Answered by
2
Hello !
___________________________________________________________
Given : AB II CD
PQ is transversal
TU and SR are bisectors of angle ATQ and angle DRP resp.
___________________________________________________________
To prove: TU = SR
___________________________________________________________
Proof : IN ΔTUR and ΔTSR
∠ATQ = ∠DRP (AIA)
∠TRU = ∠RTS (AIA)
TR = RT (Common)
Hence , ΔTUR ≈ ΔTSR (ASA)
________________________________________________________
___________________________________________________________
There fore ,TU = SR (CPCT)
___________________________________________________________
Given : AB II CD
PQ is transversal
TU and SR are bisectors of angle ATQ and angle DRP resp.
___________________________________________________________
To prove: TU = SR
___________________________________________________________
Proof : IN ΔTUR and ΔTSR
∠ATQ = ∠DRP (AIA)
∠TRU = ∠RTS (AIA)
TR = RT (Common)
Hence , ΔTUR ≈ ΔTSR (ASA)
________________________________________________________
___________________________________________________________
There fore ,TU = SR (CPCT)
Attachments:
prathamkaushal:
Thanks a lot
Similar questions