Math, asked by yashchauhan1804, 3 months ago

A tree break due to storm and touched at ground and elevation is 30m the distance between the tree to touches the p of the ground is 8m and the distance to top of the tree to touches the ground is 10 find the total height of the tree​

Answers

Answered by Mbappe007
1

Given:

The broken part bends so that the top of the tree touches the ground making an angle 30 °.

\bold{\angle{BAC}\: = \: 30^{\circ}}

The distance between the foot of the tree to the point where the top touches the ground is 8 m.

\bold{\large{\underline{To\: find\: \colon}}}

Original height of tree that is ABC

</p><p>\bold{\large{\underline{Solution\: \colon}}}

Let we consider that the tree bend by strom from the point B and angle formed by the top of the tree is 30°.

According to the diagram

Height of tree(A`BC) = AB + BC

Imagine A`BC = AC

A` is a top of tree which will be on the land form an angle but after bending height of tree remain same.

\bold{\underline{\underline{In \: \triangle{ABC} \: \colon}}}

In△ABC:

\bold{ tan\: 30^{\circ} \: = \: \dfrac{BC}{AC}}tan30

∘ =

AC

BC

\bold{ \dfrac{1}{\sqrt{3}} \: = \: \dfrac{BC}{8} }

3

1

=

8

BC

\bold{ BC \: = \: \dfrac{8}{\sqrt{3}}}BC=

3

8

Rationalising the denominator and numerator

\bold{ BC \: = \: \dfrac{8}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}BC=

3

8

×

3

3

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{(\sqrt{3})^{2}}}BC=

(

3

)

2

8

3

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{3}}BC=

3

8

3

So,

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{3}\: m }BC=

3

8

3

m

Now in same ∆ ABC

\bold{cos\: 30^{\circ} \: = \: \dfrac{AC}{AB}}cos30

=

AB

AC

\bold{ \dfrac{\sqrt{3}}{2} \: = \: \dfrac{8}{AB} }

2

3

=

AB

8

\bold{ AB \: = \: \dfrac{8\times 2}{\sqrt{3}} }AB=

3

8×2

\bold{ AB \: = \: \dfrac{16}{\sqrt{3}} }AB=

3

16

After rationalising

\bold{ AB \: = \: \dfrac{16\sqrt{3}}{3} }AB=

3

16

3

\bold{AB \: = \: \dfrac{16\sqrt{3}}{3}}\: mAB=

3

16

3

m

Now we have ,

A`BC = AB + BC

\bold{A`BC \: = \: \dfrac{16\sqrt{3}}{3} \: + \: \dfrac{8\sqrt{3}}{3}}A‘BC=

3

16

3

+

3

8

3

Take LCM

\bold{A`BC \: = \: \dfrac{16\sqrt{3} \: + \: 8\sqrt{3}}{3}}A‘BC=

3

16

3

+8

3

\bold{A`BC \: = \: \dfrac{24\sqrt{3}}{3}}A‘BC=

3

24

3

\bold{A`BC \: = \: \dfrac{\cancel{24}\sqrt{3}}{3}}A‘BC=

3

24

3

\bold{A`BC \: = \:8\sqrt{3}\: m}A‘BC=8

3

m

\bold{\large{\underline{Answer}}}

Answer

So , original height of tree is \bold{\boxed{\boxed{8\sqrt{3}\: m}}}

8

3

m

Answered by lokeshnandigam69
1

Answer:

Given:

The broken part bends so that the top of the tree touches the ground making an angle 30 °.

\bold{\angle{BAC}\: = \: 30^{\circ}}∠BAC=30

The distance between the foot of the tree to the point where the top touches the ground is 8 m.

\bold{\large{\underline{To\: find\: \colon}}}

Tofind:

Original height of tree that is ABC

< /p > < p > \bold{\large{\underline{Solution\: \colon}}} </p><p>

Solution:

Let we consider that the tree bend by strom from the point B and angle formed by the top of the tree is 30°.

According to the diagram

Height of tree(A`BC) = AB + BC

Imagine A`BC = AC

A` is a top of tree which will be on the land form an angle but after bending height of tree remain same.

\bold{\underline{\underline{In \: \triangle{ABC} \: \colon}}}

In△ABC:

\bold{ tan\: 30^{\circ} \: = \: \dfrac{BC}{AC}}tan30

∘ =

AC

BC

\bold{ \dfrac{1}{\sqrt{3}} \: = \: \dfrac{BC}{8} }

3

1

=

8

BC

\bold{ BC \: = \: \dfrac{8}{\sqrt{3}}}BC=

3

8

Rationalising the denominator and numerator

\bold{ BC \: = \: \dfrac{8}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}BC=

3

8

×

3

3

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{(\sqrt{3})^{2}}}BC=

(

3

)

2

8

3

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{3}}BC=

3

8

3

So,

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{3}\: m }BC=

3

8

3

m

Now in same ∆ ABC

\bold{cos\: 30^{\circ} \: = \: \dfrac{AC}{AB}}cos30

=

AB

AC

\bold{ \dfrac{\sqrt{3}}{2} \: = \: \dfrac{8}{AB} }

2

3

=

AB

8

\bold{ AB \: = \: \dfrac{8\times 2}{\sqrt{3}} }AB=

3

8×2

\bold{ AB \: = \: \dfrac{16}{\sqrt{3}} }AB=

3

16

After rationalising

\bold{ AB \: = \: \dfrac{16\sqrt{3}}{3} }AB=

3

16

3

\bold{AB \: = \: \dfrac{16\sqrt{3}}{3}}\: mAB=

3

16

3

m

Now we have ,

A`BC = AB + BC

\bold{A`BC \: = \: \dfrac{16\sqrt{3}}{3} \: + \: \dfrac{8\sqrt{3}}{3}}A‘BC=

3

16

3

+

3

8

3

Take LCM

\bold{A`BC \: = \: \dfrac{16\sqrt{3} \: + \: 8\sqrt{3}}{3}}A‘BC=

3

16

3

+8

3

\bold{A`BC \: = \: \dfrac{24\sqrt{3}}{3}}A‘BC=

3

24

3

\bold{A`BC \: = \: \dfrac{\cancel{24}\sqrt{3}}{3}}A‘BC=

3

24

3

\bold{A`BC \: = \:8\sqrt{3}\: m}A‘BC=8

3

m

\bold{\large{\underline{Answer}}}

Answer

So , original height of tree is \bold{\boxed{\boxed{8\sqrt{3}\: m}}}

8

3

m

Similar questions