Math, asked by sakshi0098, 9 months ago

A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 9 m. Find the height of the tree.

Answers

Answered by Anonymous
45

Given :-

⟶ angle of elevation from the ground to broken part of the tree and,

⟶ The distance between the foot of the tree to the point where the top touches the ground is 9 m.

To find :-

⟶ height of the tree

Solution :-

Let AB be the original height of the tree.

Suppose it got bent at a point C and let the part CB take the position CD, meeting the ground at D. Then,

→ AD = 9 m

→ ∠ADC = 30°

→ CD =CB.

Let AC = x metres and CD = CB = y metres.

From right ∆DAC, we have

⟹ \frac{AC}{AD}  =   \tan \: 30° =   \frac{1}{ \sqrt{3} }

⟹ \frac{x}{6}  =  \frac{1}{ \sqrt{3} }

⟹ x =  \frac{9}{ \sqrt{3} }

⟹ x =  \frac{9}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  = 3 \sqrt{3}

Also, from right ∆DAC, we have

⟹ \frac{CD}{AD}  =  \sec30 =  \frac{2}{ \sqrt{3} }

⟹ \frac{y}{9}  =  \frac{2}{ \sqrt{3} }

⟹ y =  <strong>\frac{18}{ \sqrt{3} } </strong>

⟹ y =  <strong>\frac{18}{ \sqrt{3} }</strong>  \times  <strong>\frac{ \sqrt{3} }{ \sqrt{3} }  = 6 \sqrt{3}</strong>

∴ Ac = 3\sqrt{3}m

CB =  6\sqrt{3}m

total height of the tree = AC + CB

= 3\sqrt{3}m +  6\sqrt{3}m

=  9\sqrt{3}m

Hence height of the tree is  9\sqrt{3}m

========================

Note :-

refer the above attachment

Attachments:
Answered by yakshitakhatri2
2

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\colorbox{navy}{\color{silver}{\tt{❝Answer❞}}}

Let, AC be the broken part of the tree.

∴ Total height of the tree =AB + AC

\:  \:  \:  \:  \:  \:  \:  \:  \: \sf{In  \: right  \: ∆ ABC,}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{cos 30°=  \frac{BC}{AC} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\rightarrow{ \frac{1}{ \sqrt{3} } =  \frac{8}{AC}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\rightarrow\sf{AC = \frac{16}{ \sqrt{3} }  }}}

\sf{Also, tan30° =  \frac{AB}{BC} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\rightarrow{ \frac{1}{ \sqrt{3} } =  \frac{AB}{8}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\rightarrow\sf{AB =  \frac{8}{ \sqrt{ 3} } }}}

\sf{∴ Total \:  height \:  of  \:  tree = AB + AC}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \sf{ =  \frac{8}{ \sqrt{3} }  +  \frac{16}{ \sqrt{3} } }

 \sf\underline{\underline{\bold{∴ Total \:  height  \: of \:  tree = \frac{24}{ \sqrt{3} } m}}}

━━━━━━━━━━━━━━━━━━━━━━━━

Mark as brainliest ✔

Attachments:
Similar questions