Math, asked by sunitasunita49259, 7 months ago

A tree breaks due to storm and the broken part bends so that the top of tree touches the ground making an angle 30° with it The distance b/w the foot of the tree to the point where the top touches the ground is 8m . find the height of the tree​

Answers

Answered by sohamgaurat
2

Answer:

24/√3

Step-by-step explanation:

plz check the above image

plz like and follow if this answer helped you

Attachments:
Answered by Anonymous
1

\huge\mathbb\red{Answer:-}

  • Let the Height of the Tree =AB+AD

  • Let the Height of the Tree =AB+ADand given that BD=8 m

  • Let the Height of the Tree =AB+ADand given that BD=8 mNow, when it breaks a part of it will remain perpendicular to the ground (AB) and remaining part (AD) will make an angle of 30o

Let the Height of the Tree =AB+ADand given that BD=8 mNow, when it breaks a part of it will remain perpendicular to the ground (AB) and remaining part (AD) will make an angle of 30oNow, in △ABD

Let the Height of the Tree =AB+ADand given that BD=8 mNow, when it breaks a part of it will remain perpendicular to the ground (AB) and remaining part (AD) will make an angle of 30oNow, in △ABDcos30o=ADBD⇒BD=23AD⇒AD=32×8

Let the Height of the Tree =AB+ADand given that BD=8 mNow, when it breaks a part of it will remain perpendicular to the ground (AB) and remaining part (AD) will make an angle of 30oNow, in △ABDcos30o=ADBD⇒BD=23AD⇒AD=32×8also, in the same Triangle

Let the Height of the Tree =AB+ADand given that BD=8 mNow, when it breaks a part of it will remain perpendicular to the ground (AB) and remaining part (AD) will make an angle of 30oNow, in △ABDcos30o=ADBD⇒BD=23AD⇒AD=32×8also, in the same Triangletan30o=BDAB⇒AB=38

Let the Height of the Tree =AB+ADand given that BD=8 mNow, when it breaks a part of it will remain perpendicular to the ground (AB) and remaining part (AD) will make an angle of 30oNow, in △ABDcos30o=ADBD⇒BD=23AD⇒AD=32×8also, in the same Triangletan30o=BDAB⇒AB=38∴  Height of tree =AB+AD=(316+38)m=3

Similar questions