Math, asked by lokesh1021, 1 year ago

A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30 ° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

Answers

Answered by Anonymous
532
Hey there !!

Let AB be the original height of the tree.

Suppose it got bent at a point C and let the

part CB take the position CD, meeting the ground at D. Then,

→ AD = 8m,  \angle ADC = 30° and CD = CB.

→ Let AC = x metres and CD = CB = y metres.

From right ∆DAC, we have

=>  \frac{AC}{AD} = tan 30 \degree = \frac{1}{ \sqrt{3} } .

=>  \frac{x}{8} = \frac{1}{ \sqrt{3} } .

=> x =  \frac{8}{ \sqrt{3} } .

=> x =  \frac{8}{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} } .

=> x =  \frac{ 8 \sqrt{3} }{ 3 } .

▶ Also, from right ∆DAC, we have

=>  \frac{CD}{AD} = sec 30 \degree = \frac{2}{ \sqrt{3} } .

=>  \frac{y}{8} = \frac{2}{ \sqrt{3} } .

=> y =  \frac{16}{ \sqrt{3} } .

=> y =  \frac{16}{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} } .

=> y =  \frac{ 16 \sqrt{3} }{ 3 } .

 \therefore AC = \frac{ 8 \sqrt{3} }{ 3 } m and CB = \frac{ 16 \sqrt{3} }{ 3 } m.

▶ Total height of tree = AC + BC.

 = \frac{ 8 \sqrt{3} }{ 3 } + \frac{ 16 \sqrt{3} }{ 3 }

 = \frac{ 8 \sqrt{3} + 16 \sqrt{3} }{3} .

 = \frac{ 24 \sqrt{3} }{3} .

 \huge \boxed{ \boxed{ \bf = 8 \sqrt{3} m. }}

✔✔ Hence, it is solved ✅✅.

____________________________________


 \huge \boxed{ \boxed{ \boxed{ \mathbb{THANKS}}}}


 \huge \bf{ \#BeBrainly.}
Attachments:

rai974: i also know it
ayushi8235: i know this
rai974: hi
ayushi8235: hlo
rai974: hm..
rai974: s2u
mrunal44: i also know it......................
platz: great!
ROCKY7112003: great job bro
Anonymous: thanks 2 all of u
Answered by MOSFET01
257
\bold{\large{\underline{Answer\: \colon}}}

\bold{\large{\underline{Given\: \colon}}}

The broken part bends so that the top of the tree touches the ground making an angle 30 °.

\bold{\angle{BAC}\: = \: 30^{\circ}}

The distance between the foot of the tree to the point where the top touches the ground is 8 m.

\bold{\large{\underline{To\: find\: \colon}}}

Original height of tree that is A`BC

\bold{\large{\underline{Solution\: \colon}}}

Let we consider that the tree bend by strom from the point B and angle formed by the top of the tree is 30°.

According to the diagram

Height of tree(A`BC) = AB + BC

Imagine A`BC = AC

A` is a top of tree which will be on the land form an angle but after bending height of tree remain same.

\bold{\underline{\underline{In \: \triangle{ABC} \: \colon}}}

\bold{ tan\: 30^{\circ} \: = \: \dfrac{BC}{AC}}

\bold{ \dfrac{1}{\sqrt{3}} \: = \: \dfrac{BC}{8} }

\bold{ BC \: = \: \dfrac{8}{\sqrt{3}}}

Rationalising the denominator and numerator

\bold{ BC \: = \: \dfrac{8}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}}

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{(\sqrt{3})^{2}}}

\bold{ BC \: = \: \dfrac{8\sqrt{3}}{3}}

So,

 \bold{ BC \: = \: \dfrac{8\sqrt{3}}{3}\: m }

Now in same ∆ ABC

 \bold{cos\: 30^{\circ} \: = \: \dfrac{AC}{AB}}

 \bold{ \dfrac{\sqrt{3}}{2} \: = \: \dfrac{8}{AB} }

 \bold{ AB \: = \: \dfrac{8\times 2}{\sqrt{3}} }

 \bold{ AB \: = \: \dfrac{16}{\sqrt{3}} }

After rationalising

 \bold{ AB \: = \: \dfrac{16\sqrt{3}}{3} }

\bold{AB \: = \: \dfrac{16\sqrt{3}}{3}}\: m

Now we have ,

A`BC = AB + BC

 \bold{A`BC \: = \: \dfrac{16\sqrt{3}}{3} \: + \: \dfrac{8\sqrt{3}}{3}}

Take LCM

 \bold{A`BC \: = \: \dfrac{16\sqrt{3} \: + \: 8\sqrt{3}}{3}}

 \bold{A`BC \: = \: \dfrac{24\sqrt{3}}{3}}

 \bold{A`BC \: = \: \dfrac{\cancel{24}\sqrt{3}}{3}}

 \bold{A`BC \: = \:8\sqrt{3}\: m}

\bold{\large{\underline{Answer}}}

So , original height of tree is \bold{\boxed{\boxed{8\sqrt{3}\: m}}}
Attachments:

platz: great answer!
MOSFET01: Thanks
platz: ur welcome
Similar questions