Math, asked by hamza112, 1 year ago

a tree breaks due to the storm and the broken part bends so that the top of the tree touches the ground making an angle of 30° with it.the distance between the foot of the tree to the point where the top touches the ground is 8m. find the height of the tree ​

Answers

Answered by Anonymous
7

Answer:

h = 8÷root3 m

check the attachment for complete answer..

hope this helps you ..

Attachments:
Answered by silentlover45
11

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

\large\underline{Given:-}

  • The ground and making angle 30°
  • The top touches the ground is 8 m.

\large\underline{To find:-}

  • find the height of the tree...?

\large\underline{Solutions:-}

\: \: \: \: \: \star \: \: \: In \:\: \triangle \: ABC

\: \: \: \: \: \leadsto Cot \: {30} \degree \: \: = \: \: \frac{AB}{AC} \: \: = \: \: \frac{B}{P} \: \: \: \: {(B \: = \: Base, \: \: P \: = \: Perpendicular)}

\: \: \: \: \: \leadsto \sqrt{3} \: \: = \: \: \frac{8}{AC}

\: \: \: \: \: \leadsto AC \: \: = \: \: \frac{\sqrt{3}}{8}

\: \: \: \: \: \therefore x \: \: = \: \: \frac{\sqrt{3}}{8}

\: \: \: \: \: \star \: \: \: In \:\: \triangle \: ABC

\: \: \: \: \: \leadsto Cos \: {30} \degree \: \: = \: \: \frac{AB}{BC} \: \: = \: \: \frac{B}{H} \: \: \: \: {(B \: = \: Base, \: \: H \: = \: Hypothesis)}

\: \: \: \: \: \leadsto \frac{\sqrt{3}}{2} \: \: = \: \: \frac{8}{y}

\: \: \: \: \: \leadsto y \: \sqrt{3} \: \: = \: \: {8} \: \times \: {2}

\: \: \: \: \: \leadsto y \: \sqrt{3} \: \: = \: \: {16}

\: \: \: \: \: \leadsto y \: \: = \: \: \frac{16}{\sqrt{3}}

\: \: \: \: \: \star \: \: \: Now, \: \: height \: \: of \: \: the \: \: tree \: \: \leadsto \: \: x \: + \: y

\: \: \: \: \: \leadsto \frac{8}{\sqrt{3}} \: + \: \frac{16}{\sqrt{3}}

\: \: \: \: \: \leadsto \frac{24}{\sqrt{3}}

\: \: \: \: \: \star \: \: \: Now, \: \: Multiplying  \: \: by \: \: {24}{\sqrt{3}}

\: \: \: \: \: \leadsto \frac{24}{\sqrt{3}} \: \times \: \frac{\sqrt{3}}{\sqrt{3}}

\: \: \: \: \: \leadsto \frac{{24} \: \sqrt{3}}{3}

\: \: \: \: \: \leadsto \frac{{24} \: \sqrt{3}}{3}

\: \: \: \: \: \leadsto {8} \: \sqrt{3}

»★ Hence,

\: \: \: \: \: \star \: \: \: The \: \: height \: \: of \: \: the \: \: tree \: \: {8} \: \sqrt{3}.

\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\ star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star

Attachments:
Similar questions