A tree has two vertices of degree 2, one vertex of degree 3, and three vertices of degree 4. How many vertices of degree 1 does it have?
Answers
Answered by
1
Answer:
A certain tree has two vertices of degree 4, one vertex of degree 3 and one vertex of degree 2. If the other vertices have degree 1, how many vertices are there in the graph?
n-3
-320
11
1Answer:11
Answered by
14
Let number of vertices of degree 1 be k.
No of vertices = k + 2 + 1 + 1 = k +4 (we have two vertices of degree 4, one vertex of degree 3 and one vertex of degree 2)
No of edges = No of vertices -1 // As it is a tree
= k + 3
Applying handshaking lemma
2 * 4 + 1 * 3 + 1 *2 + 1* k = 2 ( no edges ) = 2 * ( k +3)
=> 13 + k = 2k + 6
=> k = 7
So number of vertices = k +4 = 11
help
please mark me brainly list
Similar questions