Math, asked by pappuchitaipur, 10 months ago

a tree is broken at a height of 5m ground and it's top touches ground at a distance of 12m from the base of tree find the original height of tree ​

Answers

Answered by vinushrisb2010
2

Answer:

17

Step-by-step explanation:

12m +5m =

12+5

12

5

17m is the answer .

Please make me brainalist

Answered by saanvigrover2007
2

Let A'CB represent the tree before it is broken at the point C and let the top A' touches the ground at A after it broke Then  \triangle ABC is the right angled triangle, right angled at B.

Then,

{ \underline{\purple{ \sf{AB = 12m  \: and  \: BC = 5m}}}}

Using Pythagoras Theorem in  \triangle ABC

 \rm \green{(AC)^{2}  = (AB)^{2}   +  BC^{2} }

 \sf{(AC)^{2} =  {12}^{2}  +  {5}^{2} } \\  \sf{(AC)^{2}  = 144 + 25}

 \sf{(AC)^{2} = 169}

\sf \blue{AC=  \sqrt{169} }

\sf { \underline{\fbox{\pink{AC = 13m}}}}

 \sf{Original  \: height \: of \: tree \: = 5 +13 =} \sf{\Large{\underline{\fbox{\red{18m}}}}}

Attachments:
Similar questions