Math, asked by veerpranv284, 10 months ago

A tree is broken by the wind . The top struck the ground at an angle of 30° and at a distance of 10m from the root. Find the height of the tree.

Answers

Answered by amansharma264
23

 \bf \implies \green{{ \underline{given \div }}} \\ \\ \sf \to \: the \: top \: struck \: the \: ground \: at \: an \: angle \: = 30 \degree \\ \\ \sf \to \: distance \: 10 m \: from \: the \: root

 \bf \to \orange{{ \underline{to \: find \div }}} \\ \\ \sf \to \: find \: the \: height \: of \: the \: tree

 \bf \to{ \underline{solution \div }} \\  \\  \sf \to \: let \: ac \:  = x \\  \\  \sf \to \: cb \:  = y \\  \\  \sf \to \: ao \:  = 10m \\  \\  \sf \to \: oc \:  = y \\  \\  \sf \to \: in \:  \triangle \: oac \:  \\  \\  \sf \to \:  \tan(  \theta)  =  \frac{p}{b}  \\  \\  \sf \to \:  \tan( 30 \degree)  =  \frac{ac}{oa}   \\  \\  \sf \to \:  \frac{1}{ \sqrt{3} }  =  \frac{x}{10}  \\  \\  \sf \to \: x \:  =  \frac{10}{ \sqrt{3} }  \\  \\  \sf \to \: again \: in \triangle \: oac

 \sf \to \:  \cos( \theta)  =  \frac{b}{h}  \\  \\  \sf \to \:  \cos(30 \degree)  =  \frac{oa}{oc}  \\  \\  \sf \to \:  \frac{ \sqrt{3} }{2}  =  \frac{10}{y}  \\  \\  \sf \to \:  \sqrt{3} y = 20 \\  \\  \sf \to \: y \:  =  \frac{20}{ \sqrt{3} }  \\  \\  \sf \to \: height \: of \: tree \:  = ab = ac \:  +  \: cb \\  \\  \sf \to \: x \:  + y \:  =  \frac{10}{ \sqrt{3} }  +  \frac{20}{ \sqrt{3} }  \\  \\  \sf \to \:  \frac{30}{ \sqrt{3} }  \\  \\  \sf \to \: rationalise \:the \: term

 \sf \to \:  \frac{30}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  \sf \to \:  \frac{30 \sqrt{3} }{3} \\  \\  \sf \to \:  \frac{ \cancel{30} \sqrt{3} }{ \cancel{3}}  = 10 \sqrt{3}   \\  \\  \sf \to \: height \: of \: tree \:  = 10 \sqrt{3} m

Attachments:
Similar questions