A triangle ABC is drawn to circumscribe a circle of radius 4cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8cm and 6cm respectively. find the sides AB and AC .
Answers
Answer:
ANSWER
Let there is a circle having center O touches the sides AB and AC of the triangle at point E and F respectively.
Let the length of the line segment AE is x.
Now in △ABC,
CF=CD=6 (tangents on the circle from point C)
BE=BD=6 (tangents on the circle from point B)
AE=AF=x (tangents on the circle from point A)
Now AB=AE+EB
⟹AB=x+8=c
BC=BD+DC
⟹BC=8+6=14=a
CA=CF+FA
⟹CA=6+x=b
Now
Semi-perimeter, s=
2
(AB+BC+CA)
s=
2
(x+8+14+6+x)
s=
2
(2x+28)
⟹s=x+14
Area of the △ABC=
s(s−a)(s−b)(s−c)
=
(14+x)((14+x)−14)((14+x)−(6+x))((14+x)−(8+x))
=
(14+x)(x)(8)(6)
=
(14+x)(x)(2×4)(2×3)
Area of the △ABC=4
3x(14+x)
.............................(1)
Area of △OBC=
2
1
×OD×BC
=
2
1
×4×14=28
Area of △OBC=
2
1
×OF×AC
=
2
1
×4×(6+x)
=12+2x
Area of ×OAB=
2
1
×OE×AB
=
2
1
×4×(8+x)
=16+2x
Now, Area of the △ABC=Area of △OBC+Area of △OBC+Area of △OAB
4
3x(14+x)
=28+12+2x+16+2x
4
3x(14+x)
=56+4x=4(14+x)
3x(14+x)
=14+x
On squaring both sides, we get
3x(14+x)=(14+x)
2
3x=14+x ------------- (14+x=0⟹x=−14 is not possible)
3x−x=14
2x=14
x=
2
14
x=7
Hence
AB=x+8
AB=7+8
AB=15
AC=6+x
AC=6+7
AC=13
So, the value of AB is 15 cm and that of AC is 13 cm. Option B.
Step-by-step explanation:
hope u like it
Answer:
☟︎︎︎
In ΔABC,
Length of two tangents drawn from the same point to the circle are equal,
∴ CF = CD = 6cm
∴ BE = BD = 8cm
∴ AE = AF = x
We observed that,
AB = AE + EB = x + 8
BC = BD + DC = 8 + 6 = 14
CA = CF + FA = 6 + x
Now semi perimeter of circle s,
⇒ 2s = AB + BC + CA
= x + 8 + 14 + 6 + x
= 28 + 2x
⇒s = 14 + x
Area of ΔABC = √s (s - a)(s - b)(s - c)
= √(14 + x) (14 + x - 14)(14 + x - x - 6)(14 + x - x - 8)
= √(14 + x) (x)(8)(6)
= √(14 + x) 48 x .
(i)
Area of ΔABC = 2×area of (ΔAOF + ΔCOD + ΔDOB)
= 2×[(1/2×OF×AF) + (1/2×CD×OD) + (1/2×DB×OD)]
= 2×1/2 (4x + 24 + 32) = 56 + 4x .
(ii)
Equating equation (i) and (ii) we get,
√(14 + x) 48 x = 56 + 4x
Squaring both sides,
48x (14 + x) = (56 + 4x)2
⇒ 48x = [4(14 + x)]2/(14 + x)
⇒ 48x = 16 (14 + x)
⇒ 48x = 224 + 16x
⇒ 32x = 224
⇒ x = 7 cm
,
AB = x + 8 = 7 + 8 = 15 cm
CA = 6 + x = 6 + 7 = 13 cm.