Math, asked by sunny3747, 7 months ago

A triangle ABC is inscribed in the ellipse 2x2 + y2 = 18. If B is (1,4) and C is (3,0), then the greatest value of the area of the triangle
ABC is (take 6 = 2.45) A.Value of [4] [-]represents greatest integer function.​

Answers

Answered by amitnrw
1

Given : A triangle ABC is inscribed in the ellipse 2x²+ y2 = 18. If B is (1,4) and C is (3,0),

To Find :  the greatest value of the area of the triangle

(A) 3√6- 6 (B) √6+2 (0)3√6+6 (D) 6/2+4

Solution:

B ( 1 , 4)

C  ( 3, 0)

A = ( x , y)

2x² + y² = 18

A = ( x , y)  , B ( 1 , 4) , C  ( 3, 0)

Area of Triangle

Ar = (1/2) |  x ( 4 - 0) + 1 ( 0 - y)  + 3(y - 4) |

=> Ar  = (1/2) |   4x  - y  + 3y  - 12 |

=> Ar = (1/2) |  4x  + 2y - 12 |

=> Ar =   | 2x  + y  - 6 |

2x  + y  - 6  > 0

Ar = 2x  + y  - 6  

=> Ar = 2x  + √(18 - 2x²)

=> d(Ar)/dx  = 2  +  (1/2√(18 - 2x²) )(-4x)

=> d(Ar)/dx  = 0

=>  2  +  (1/2√(18 - 2x²) )(-4x) = 0

=> 2 =  2x/√(18 - 2x²)

=> √(18 - 2x²) = x

=> 18 - 2x² = x²

=> x² = 6     =>   y²  = 6

=> x = ±√6   , y =  ±√6

2x  + y  - 6  > 0  => x & y are +√6

Area = 2x  + y  - 6

= 3√6 - 6

2x  + y  - 6  < 0  Then x & y are  - √6    or x = -√6 , y = √6  or  x = √6 , y = -√6

x & y are  - √6  

Area = | -3√6 - 6|

= 3√6 + 6

x = -√6 , y = √6   = | -√6 - 6| = √6 + 6

x = √6 , y = -√6  = | √6 - 6 |  = 6 - √6

3√6 + 6    is the maximum area

= 3(2.45) + 6

= 13.35 sq unit

Learn More:

Find the area of triangle whose sides are 91cm, 96 cm and 105 cm ...

https://brainly.in/question/10779908

Show that the triangle of maximum area that can be inscribed in a ...

https://brainly.in/question/13713837

Attachments:
Similar questions