Math, asked by mohityadavbond1168, 1 year ago

A triangle abc with vertices a(-1,0), b(-2,3/4), c(-3,7/6) has its orthocentre h.then the orthocentre of triangle bch will be.?

Answers

Answered by VEDULAKRISHNACHAITAN
17

Answer:

A(-1,0)

Step-by-step explanation:

Given triangle is obtused angled triangle, being obtused at vertice B.

Orthocenter is point of intersection of altitudes , and for an obtuse angled triangle orthocenter lies outside the triangle.

Now, Given that H is the Orthocenter for triangle ABC,

from attached diagram it is evident that

  A will be the orthocenter for triangle BHC

  B will be orthocenter for triangle AHC

  C will be the orthocenter for triangle AHB.

Answer:A(-1,0).

Attachments:
Answered by palampallisathwik
2

Answer:

Step-by-step explanation:

The orthocenter is the intersecting point or all the altitude of the triangle. The point where the altitude of a triangle meet is known as the orthocenter.

Given the points,

A(−1,0)≡(x  

1

​  

,y  

1

​  

),B(−2,  

4

3

​  

)≡(x  

2

​  

,y  

2

​  

),C(−3,  

6

−7

​  

)

To find the orthocenter, H

 SlopeofAB=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

=  

−2+1

4

3

​  

−0

​  

 =  

4

−3

​  

 

Slope of CF = perpendicular slope of AB

=  

SlopeofAB

−1

​  

=  

3

4

​  

 

∴ Equation of CF⇒y−y  

1

​  

=m(x−x  

1

​  

)

y  

4

−3

​  

=  

3

4

​  

(x+3)⇒16x−12y+45=0→(1)

SlopeofBC=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

=  

−3+2

6

−7

​  

 

4

−3

​  

 

​  

=  

12

23

​  

 

∴ Slope of AD=perpendicular slope of BC=  

23

−12

​  

 

∴ Equation of AD=y−y  

1

​  

=m(x−x  

1

​  

)

y  

12

−23

​  

=  

23

−12

​  

(x+1)⇒144x+276y=385⟶(2)

Obtaining the value of x and y by solving can (1) and (2)

16x−12y+45=0⟶(1)×144

144x+276y=385⟶(2)×16

6144y=12640

2304x+4416y=6160−2304x±1728y=±6480

​  

 

⇒y=2.057,x=4.36

To find the orthocenter of △BCH

i.e, Let the orthocenter be denoted as 0  

SlopeofBH=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

 

=  

−2−4.36

0.75−2.06

​  

=0.206

∴ Slope of CR = perpendicular slope of BH

=  

SlopeofBH

−1

​  

=  

0.206

−1

​  

=−4.85

Equation of CR⇒y−y  

1

​  

=m(x−x  

1

​  

)

y−0.206=−4.85(x+3)

⇒4.85x+y=−14.36⟶(1)

SlopeofBC=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

=  

−3+2

6

−7

​  

 

4

−3

​  

 

​  

=  

12

23

​  

=1.92

Slope of HP = perpendicular slope of HP

slopeofHP

−1

​  

=−0.52

Equation of HP=y−1.92=−0.52(x−4.36)

⇒0.52x+y=4.19⟶(2)

Obtaining the value of x and y by solving equation (1) and (2)

∴4.33x=−18.55

4.85x+y=−14.36−0.52x∓y=−4.19

​  

 

⇒x=−4.28 and y=6.42

∴ The orthocenter of △BCH=(−4.28,6.42)The orthocenter is the intersecting point or all the altitude of the triangle. The point where the altitude of a triangle meet is known as the orthocenter.

Given the points,

A(−1,0)≡(x  

1

​  

,y  

1

​  

),B(−2,  

4

3

​  

)≡(x  

2

​  

,y  

2

​  

),C(−3,  

6

−7

​  

)

To find the orthocenter, H

 SlopeofAB=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

=  

−2+1

4

3

​  

−0

​  

 =  

4

−3

​  

 

Slope of CF = perpendicular slope of AB

=  

SlopeofAB

−1

​  

=  

3

4

​  

 

∴ Equation of CF⇒y−y  

1

​  

=m(x−x  

1

​  

)

y  

4

−3

​  

=  

3

4

​  

(x+3)⇒16x−12y+45=0→(1)

SlopeofBC=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

=  

−3+2

6

−7

​  

 

4

−3

​  

 

​  

=  

12

23

​  

 

∴ Slope of AD=perpendicular slope of BC=  

23

−12

​  

 

∴ Equation of AD=y−y  

1

​  

=m(x−x  

1

​  

)

y  

12

−23

​  

=  

23

−12

​  

(x+1)⇒144x+276y=385⟶(2)

Obtaining the value of x and y by solving can (1) and (2)

16x−12y+45=0⟶(1)×144

144x+276y=385⟶(2)×16

6144y=12640

2304x+4416y=6160−2304x±1728y=±6480

​  

 

⇒y=2.057,x=4.36

To find the orthocenter of △BCH

i.e, Let the orthocenter be denoted as 0  

SlopeofBH=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

 

=  

−2−4.36

0.75−2.06

​  

=0.206

∴ Slope of CR = perpendicular slope of BH

=  

SlopeofBH

−1

​  

=  

0.206

−1

​  

=−4.85

Equation of CR⇒y−y  

1

​  

=m(x−x  

1

​  

)

y−0.206=−4.85(x+3)

⇒4.85x+y=−14.36⟶(1)

SlopeofBC=  

x  

2

​  

−x  

1

​  

 

y  

2

​  

−y  

1

​  

 

​  

=  

−3+2

6

−7

​  

 

4

−3

​  

 

​  

=  

12

23

​  

=1.92

Slope of HP = perpendicular slope of HP

slopeofHP

−1

​  

=−0.52

Equation of HP=y−1.92=−0.52(x−4.36)

⇒0.52x+y=4.19⟶(2)

Obtaining the value of x and y by solving equation (1) and (2)

∴4.33x=−18.55

4.85x+y=−14.36−0.52x∓y=−4.19

​  

 

⇒x=−4.28 and y=6.42

∴ The orthocenter of △BCH=(−4.28,6.42)

please brainliest my answer

Similar questions