Math, asked by shobhabhutiap6mcab, 17 days ago

A triangle and a parallelogram have the same base and equal areas. If the altitude of the triangle is 12 cm, find the altitude of the parallelogram.​

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Let assume that base of triangle and parallelogram be x cm.

Case :- 1

Base of triangle = x cm

Height of triangle, h = 12 cm

We know,

\boxed{ \rm{ \:Area_{(triangle)} =  \frac{1}{2} \times Base \times Height \: }} \\

So, on substituting the values, we get

\rm \:  \:Area_{(triangle)} =  \frac{1}{2} \times x \times 12 \:  \\

\rm\implies \:\rm \:  \:Area_{(triangle)} =  6x \:  {cm}^{2}  \:  \\

Case :- 2

Base of parallelogram = x cm

Let height of parallelogram = h cm

We know,

\boxed{ \rm{ \:Area_{(parallelogram)} =   Base \times Height \: }} \\

So, on substituting the values, we get

\rm\implies \:\rm \: Area_{(parallelogram)} \:  =  \: x \times h \:  {cm}^{2}

Now, it is given that,

\rm \: Area_{(triangle)} \:  =  \: Area_{(parallelogram)} \\

\rm \: 6x = x \times h \\

\rm\implies \:\boxed{ \rm{ \:h \:  =  \: 6 \: cm \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by aryan021212
6

Let base is b

And height is h

Area of parallelogram = Area of triangle

b \times h =  \frac{1}{2}  \times b \times 12

h = 6 \: cm

Similar questions