Math, asked by anupkumarrai820, 4 days ago

A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 13cm, 14cm and 15cm and the parallelogram stands on the base 14cm , find the height of the parallelogram. ​

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Given that,

A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 13cm, 14cm and 15cm and the parallelogram stands on the base 14cm.

Let assume that the required triangle be ABE and sides of triangle be denoted by a, b, c respectively.

So, a = 13 cm, b = 14 cm and c = 15 cm

Now, Semi - perimeter (s) of triangle is given by

\boxed{\sf{  \:\rm \: s \:=  \:  \frac{a + b + c)}{2}  \:  \: }} \\

So, on substituting the values of a, b, c, we get

\rm \: s \:  =  \: \dfrac{13 + 14 + 15}{2}  \\

\rm \: s \:  =  \: \dfrac{42}{2}  \\

\rm\implies \:s \:  =  \: 21 \: cm \\

Now, area of triangle using Heron's Formula is given by

\boxed{\sf{  \:\rm \: Area_{\triangle} \:  =  \:  \sqrt{s(s - a)(s - b)(s - c)}  \: }} \\

So, on substituting the values, we get

\rm \: Area_{\triangle} \\

\rm \: =  \:  \sqrt{21(21 - 13)(21 - 14)(21 - 15)}  \\

\rm \: =  \:  \sqrt{21(8)(7)(6)}  \\

\rm \: =  \:  \sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 3 \times 2}  \\

\rm \: =  \: 7 \times 3 \times 2 \times 2 \\

\rm \: =  \:84 \:  {cm}^{2}  \\

Now, it is given that A triangle and a parallelogram have the same base and the same area, the parallelogram stands on the base 14cm. Let assume that Height of parallelogram to the corresponding base is h cm.

We know,

\rm \:  Area_{ { \parallel}^{gm} } \:  =  \: base \:  \times  \: height \\

\rm \:  Area_{ { \parallel}^{gm} } \:  =  \: 14 \:  \times  \: h \:  {cm}^{2}  \\

So, as we have

\rm \: Area_{\triangle} \:  =  \: Area_{ { \parallel}^{gm} } \\

\rm \:  \: 84 = 14 \times h \\

\rm \: h \:  =  \: \dfrac{84}{14}  \\

\rm\implies \:h \:  =  \: 6 \: cm \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Answered by talpadadilip417
10

Step-by-step explanation:

Answer:

\boxed{\huge{\mathbb\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}

Step-by-step explanation:

hope it help you.

thanks

Attachments:
Similar questions