a triangle and a parallelogram stand on same base and are equal in area if the sides of the triangle are 40, 24 and 32 cm and base of the parallelogram is 40 centimetre find the corresponding height of the parallelogram.
Answers
Answer:
Lengths of the sides of the triangle :
• a = 40 cm
• b = 32 cm
• c = 24 cm
Semi - perimeter (s) = (a + b + c)/2
⇒ s = (40 + 32 + 24)/2
⇒ s = 96/2
⇒ s = 48
We know that
Area of the triangle = \begin{gathered}\sf \sqrt{s(s - a)(s - b)(s - c} \\\end{gathered}s(s−a)(s−b)(s−c
\begin{gathered}\sf = \sqrt{48(48 - 40)(48 - 32)(48 - 24)} \\ \\ \sf = \sqrt{48(8)(16)(24)} \\ \\ \sf = \sqrt{384(384)} \\ \\ \sf = \sqrt{ {384}^{2} } \\ \\ \sf = 384 \: cm^{2}\end{gathered}=48(48−40)(48−32)(48−24)=48(8)(16)(24)=384(384)=3842=384cm2
Area of the triangle = 384 cm²
Triangle and parallelogram stand on same base
That means lengths of the corresponding bases are equal
Length of the base of the parallelogram (b) = 40 cm
Let the height of the parallelogram be 'h' cm
Given
Area of the Parallelogram = Area of the triangle
⇒ bh = 384 cm²
⇒ 40h = 384
⇒ h = 384/40
⇒ h = 9.6 cm
Therefore the height of the parallelogram is 9.6 cm
Explanation: