Math, asked by ayush3844, 5 months ago


A triangle has sides 6, 7, and 8. The line through its incenter
parallel to the shortest side is drawn to meet the other two
sides at P and Q. Then find the length of the segment PQ?​


ayush3844: ans properly

Answers

Answered by tejaswi91
1

Answer:

Answer

AnswerΔ=r×s ∴221×r

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. 

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. Thus, hh−r=6PQ 

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. Thus, hh−r=6PQ ⇒1−hr=6PQ 

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. Thus, hh−r=6PQ ⇒1−hr=6PQ ⇒1−72=6PQ

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. Thus, hh−r=6PQ ⇒1−hr=6PQ ⇒1−72=6PQ⇒75=6PQ

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. Thus, hh−r=6PQ ⇒1−hr=6PQ ⇒1−72=6PQ⇒75=6PQ⇒PQ=730

AnswerΔ=r×s ∴221×r=21b×h=26×h=3h or hr=72Now APQ and ABC are similar. Thus, hh−r=6PQ ⇒1−hr=6PQ ⇒1−72=6PQ⇒75=6PQ⇒PQ=730

Answered by ayushi4946
0

Answer:

Δ=r×s ∴

2

21×r

=

2

1

b×h=

2

6×h

=3h or

h

r

=

7

2

Now APQ and ABC are similar.

Thus,

h

h−r

=

6

PQ

⇒1−

h

r

=

6

PQ

⇒1−

7

2

=

6

PQ

7

5

=

6

PQ

⇒PQ=

7

30

Step-by-step explanation:

plz mark as brainliest

Attachments:
Similar questions