Math, asked by barjeesrasheed2, 6 hours ago

A triangle having semiperimeter 21 and one of the side is 13 and the difference between other two sides is 1. Area of the triangle (in sq. units) is​

Answers

Answered by BrainlyWise
64

Question

A triangle having semiperimeter 21 and one of the side is 13 and the difference between other two sides is 1. find the area of the triangle (in sq. units).

Solution

• Let the three sides of the triangle be a, b and c

Semi-perimetre of the triangle is 21 units

According to the Question

⇒ a = 13 units

⇒ b-c = 1 units

b = (c+1) units

As Per The Question :-

\large{\sf{Semi-perimetre=\frac{a+b+c}{2}}}

\large{\sf{21=\frac{13+c+1+c}{2}}}

\large{\sf{21×2=14+2c}}

\large{\sf{42-14=2c}}

\large{\sf{2c=28}}

\large{\sf{c=\frac{28}{2}}}

c = 14 units

b = (c+1) = (14+1) = 15 units

Answer

By Heron's Formula:-

\large{\sf{Area\:∆=\sqrt{s(s-a)(s-b)(s-c)}}}

where,

• s = Semi-perimetre

• a = first side

• b = second side

• c = third side

Hence, putting the values we get

\large{\sf{Area=\sqrt{21(21-13)(21-14)(21-15)}}}

\large{\sf{Area=\sqrt{21×8×7×6}}}

\large{\sf{Area=\sqrt{7056}}}

\large{\sf{Area\:∆=84}}

Therefore, the required area of the triangle is 84 units.

Answered by itzMeGunjan
5

Let the side of triangle are a, b, c

acc. to question

  • side a is 12
  • Semi perimeter (S)is 21

  \:  \:  \:  \:  \:  \: \large{ \sf \: S =  \frac{a + b + c}{2} } \\ \bf  \:  \:  \:  \:  \:  \: 21 =   \frac{13 + b + c}{2}  \\   \bf\:  \:  \:  \:  \: 42  = 13 + b + c \\  \bf \:  \:  \:  \: 42 - 13 = b + c \\  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 29 = b + c \:  -  - (1)

The difference between the other two side is 1

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf1 = b - c \: \:  \:   -  - (2)

Now, equate eq. (1) and (2) , by adding

 \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \: \:  \:  \:  \: 29 = b +  \cancel{c} -  - (1) \\ \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:   \:  \: \:  \underline{ +  \: 1  = b -  \cancel{c} }-  - (2) \\30 = 2b \\\:  \:  \:  \:  b =  \frac{30}{2}  \\   \:\:  \:  \:  \:  \boxed{ \bf{b = 15}}

By putting value of b in eq. (2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: b - c = 1 \\ \:  \:  \:  \:  \:  \:  \:  \:  \: 15 - c = 1 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:15 - 1 = c \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{\bf \: c = 14}

 \boxed{\bf{A \:∆=  \sqrt{S \: (S - a)(S - b)(S - c)} } }\\  \rightarrow \sqrt{21(21 - 13)(21 - 14)(21 - 15)}  \\  \rightarrow  \sqrt{21 \times 8 \times 7  \times 6}  \\   \rightarrow \sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 3 \times 2}  \\  \implies7 \times 3 \times 2 \times 2 \\  \implies21 \times 4 \\  \red{\star}    \sf{A\: ∆} : \implies    \: \boxed{  \sf84 \: sq. \: }

The required area of triangle is 84 units.

#Gunjan

Similar questions