Math, asked by Navmand, 9 months ago

A triangle shaped land has the sides in the ratio 3:5:7 . If its perimeter is 300 meter . What will the area of the land

Answers

Answered by amansharma264
34

EXPLANATION.

=> A triangular shaped land has the sides in the

ratio = 3:5:7

=> it's perimeter = 300 m.

To find area of the land.

 \sf :  \implies \: let \: the \: sides \: of \: triangle \:  = 3x,5x,7x \\  \\ \sf :  \implies \: 3x + 5x + 7x = 300 \\  \\ \sf :  \implies \: 15x = 300 \\  \\ \sf :  \implies \: x \:  = 20 \:

\sf :  \implies \: their \: sides \: are \:    \\  \\ \sf :  \implies \: 3x = 3 \times 20 = 60 \\  \\ \sf :  \implies \: 5x = 5 \times 20 = 100 \\  \\ \sf :  \implies \: 7x = 7 \times 20 = 140

\sf :  \implies \: by \: using \: herons \: formula \:  \\  \\\sf :  \implies \: s \:  =  \frac{a + b + c}{2} \\  \\  \sf :  \implies \: s \:  =  \frac{60 + 100 + 140}{2}   = \frac{300}{2}  = 150 \: m

\sf :  \implies \: herons \: formula \:  \\  \\ \sf :  \implies \:  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ \sf :  \implies \:  \sqrt{150(150 - 60)(150 - 100)(150 - 140)}  \\  \\ \sf :  \implies \:  \sqrt{150 \times 90 \times 50 \times 10}  \\  \\ \sf :  \implies \:  \sqrt{6750000} \\  \\  \sf :  \implies \: 1500 \sqrt{3} m {}^{2}

\sf :  \implies \:  \green{{ \underline{area \: of \: land \:  = 1500 \sqrt{3}  {m}^{2} }}}

Similar questions