Math, asked by karansharma7726955, 8 months ago

A triangle shaped land has the
sides in the ratio 3:5:7, if its perimeter is 300
meter. What will be the area of the land ? Ich

Answers

Answered by Ataraxia
9

SOLUTION :-

Let the sides of the triangle shaped land be 3x, 5x and 7x.

Given that,

Perimeter of the triangle shaped land = 300 m

\longrightarrow\sf 3x+5x+7x= 300\\\\\longrightarrow 15x= 300 \\\\\longrightarrow\bf x =20

The sides of the triangle are 60m, 100m and 140m .

\boxed{\bf Area \ of \ the \ triangle = \sqrt{s(s-a)(s-b)(s-c)} }

Semi perimeter , s = 300/2 = 150 m

Area of the triangle = \sf\sqrt{150(150-60)(150-100)(150-140}

                                 = \sf\sqrt{150\times 90\times 50\times 10}

                                 = \sf\sqrt{3\times5\times5\times2\times3\times3\times5\times2\times5\times5\times2\times5\times2}

                                 = \sf\sqrt{3^2\times 5^6\times 2^4\times 3}

                                 = \sf 3\times5\times5\times5\times2\times2\times\sqrt{3}

                                 = \bf 1500\sqrt{3}  \ m

                                   

Answered by Anonymous
6

AnswEr :-

  • Area of the triangle is 1500√3m².

Given :-

  • A triangle shaped land has sides in the ratio 3:5:7 and it's perimeter is 300m.

To Find :-

  • Area of the triangle.

SoluTion :-

Put x in the ratio

Then, sides will be

  • 3x
  • 5x
  • 7x

Formula for finding the perimeter of the triangle is :-

Sum of all sides

According to question :-

3x + 5x + 7x = 300

→ 8x + 7x = 300

→ 15x = 300

→ x = 300/15

→ x = 20

Sides of the triangle are

  • 3 × 20 = 60m
  • 5 × 20 = 100m
  • 7 × 20 = 140m

Semi - perimeter (s) = 300/2 = 150

Area of the triangle is :-

s (s - a) (s - b) (s - c)

→ √ 150 (150 - 60) (150 - 100) (150 - 140)

→ √ 150 × 90 × 50 × 10

15003m

Hence, the area of the triangle is 15003m².

_____________________

Similar questions