Math, asked by aayush2052, 3 months ago

A triangular shaped glass with vertices at A (-5,-4), B(1,6) and C(7,-4) has to be painted. If one buckket of paint covers 6 square feet, how many bucke ts of paint will berequired to paint the whole glass, if only one coat of paint is applied.​

Answers

Answered by ʝεɳყ
86

Given :

  • A triangular shaped glass with vertices at A (-5,-4), B(1,6) and C(7,-4)
  • Area of the paint cans = 6

To Find :

  • Number of paint cans required

Solution :

Points = A (-5,-4) , B(1,6) and C(7,-4)

A (-5,-4)

  • x₁ = -5
  • y₁ = -4

B (1,6)

  • x₃ = 1
  • y₃ = 6

C(7,-4)

  • x₂ = 7
  • y₂ = -4

\\  \\  \\  \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:   \dfrac{1}{2}   \binom{ x1 \:  \:  \:  \: x2 \:   \: \:  \:  x3 \:  \:  \:  \: x1}{y1 \:  \: \:   \: y2 \:  \:  \:  \: y3 \:  \:  \:  \: y1}sq.units  \\  \\  \\  \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:  \dfrac{1}{2}  \binom{ - 5 \:  \:  \:  \: 7 \:  \:  \:  \: 1 \:   \:   - 5}{ - 4 \:  \: - 4 \:  \:  \:  \: 6 \:  \:  - 4}  \\  \\ \\  \tt   \longrightarrow \:Now  \: we \: have \: to \: cross \: multiply....\\  \\  \\ \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:  \dfrac{1}{2}  \: [ \: (20 + 42 - 4) - ( - 28 - 4 - 30) \: ] \\  \\   \\ \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:  \dfrac{1}{2}  \:[ \: (62 - 4)  - ( - 62) \:  ] \\  \\  \\ \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:  \dfrac{1}{2}  \times (58 + 62) \\  \\   \\ \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:  \dfrac{1}{2}  \times 120 \\  \\ \\ \tt  \longrightarrow \: Area \: of \: \Delta ABC \:  = \:60sq.units \\

•°• No of paint cans required = 10

_________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀

★ VERIFICATION :

 \\  \\  \\   \tt  \longrightarrow \:  \frac{ Area \: of \: the \: \Delta ABC  }{Area \: of \: the \:paint \: cans}  \\  \\ \\ \tt  \longrightarrow \: \frac{60}{6}  \\ \\  \\ \tt  \longrightarrow \:10cans \\ \\  \\

Attachments:
Similar questions