Math, asked by sumitraojha212, 1 day ago

a trigonometric problem pls help​

Attachments:

Answers

Answered by abhi569
4

Question: (sec^6 A + tan^2 A)/(sec^2A + tan^2A) = 1 + sec^2 A tan^2 A

Step-by-step explanation:

\implies \sf{\dfrac{sec^6\theta+tan^2 \theta}{sec^2 \theta+tan^2 \theta}  }\\\\\\\implies \sf{\dfrac{(sec^2\theta)^3 + (tan^2\theta)^3}{sec^2\theta+ tan^2\theta}  }\\\\\\\implies\sf{\dfrac{(sec^2\theta+tan^2\theta)((sec^2\theta)^2 + (tan^2\theta)^2 - \sec^2\theta \tan^2\theta)}{(sec^2\theta + tan^2\theta) } }\\\\\\\implies\sf{(sec^2\theta)^2 +(tan^2\theta)^2 - 2sec^2\theta tan^2\theta + sec^2 \theta tan^2\theta}\\\\\implies \sf{(sec^2\theta - tan^2\theta)^2 + sec^2\theta \tan^2\theta}

\implies \sf{ 1 + sec^2\theta tan^2 \theta}

  Solved using:

  • a³ + b³ = (a + b)(a² + b² - ab)
  • a² + b² - 2ab = (a - b)²
  • sec²A - tan²A = 1

*better to be seen through browser/desktop-mode.

Answered by jaswasri2006
5

for further explanation please refer the above attachment

Attachments:
Similar questions