Physics, asked by maryamnasim636, 7 months ago

a truck has initial velocity of 20m/s and acceleration of -20m/s^2 .What distance will it covet before coming to a stop?​

Answers

Answered by Anonymous
2

Solution :

First let us find the time taken :

First Equation of Motion :

\boxed{\bf{v = u + at}}

Where :

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • t = Time Taken

Using the First Equation of Motion and substituting the values in it, we get :

:\implies \bf{v = u + at} \\ \\ \\

:\implies \bf{0 = 20 + (-20) \times t} \\ \\ \\

[Note : Here the final Velocity is taken as negative because the truck is coming to rest]

:\implies \bf{0 = 20 -20t} \\ \\ \\

:\implies \bf{- 20 = -20t} \\ \\ \\

:\implies \bf{\not{-} 20 = \not{-} 20t} \\ \\ \\

:\implies \bf{20 = 20t} \\ \\ \\

:\implies \bf{\dfrac{20}{20} = t} \\ \\ \\

:\implies \bf{1 = t} \\ \\ \\

Hence, the time taken is 1 s.

Now , to find the distance traveled :

We know the second Equation of Motion i.e,

\boxed{\bf{S = ut + \dfrac{1}{2}at^{2}}}

Where :

  • S = Distance
  • a = Acceleration
  • t = Time Taken
  • u = Initial Velocity

Using the third Equation of Motion and substituting the values in it, we get :

:\implies\bf{S = ut + \dfrac{1}{2}at^{2}} \\ \\ \\

:\implies\bf{S = 20 \times 1 + \dfrac{1}{2} \times (-20) \times 1^{2}} \\ \\ \\

:\implies\bf{S = 20 + \dfrac{1}{2} \times (-20) \times 1} \\ \\ \\

:\implies\bf{S = 20 + \dfrac{1}{2} \times (-20)} \\ \\ \\

:\implies\bf{S = 20 + (-10)} \\ \\ \\

:\implies\bf{S = 20 -10} \\ \\ \\

:\implies \bf{S = 10} \\ \\ \\

\boxed{\therefore \bf{S = 10\:m}} \\ \\ \\

Hence, the distance covered is 10 m.

Alternative method :

We know the third Equation of Motion i.e,

\boxed{\bf{v^{2} = u^{2} + 2aS}}

Where :

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • S = Distance traveled

Now using the third Equation of Motion and substituting the values in it, we get :

\boxed{\bf{0^{2} = 20^{2} + 2 \times (-20) \times S}}

:\implies \bf{0 = 20^{2} + 2 \times (-20) \times S} \\ \\ \\

:\implies \bf{0 = 20^{2} + 2 \times (-20) \times S} \\ \\ \\

:\implies \bf{- 20^{2} = 2 \times (-20) \times S} \\ \\ \\

:\implies \bf{- 400 = - 40S} \\ \\ \\

:\implies \bf{\not{-} 400 = \not{-} 40S} \\ \\ \\

:\implies \bf{\dfrac{400}{40} = S} \\ \\ \\

:\implies \bf{10 = S} \\ \\ \\

\boxed{\therefore \bf{S = 10\:m}} \\ \\ \\

Hence, the distance covered is 10 m.

Similar questions