Physics, asked by sirjannishad, 1 year ago

a tube of uniform area of cross section of 0.1 CM square contains the Mercury column of mass 10.2 gram calculate the height of mercury in tube given density of mercury is equals to 13.6 gram per centimetre cube​

Answers

Answered by imperialxak47
10

if it help you then plz mark it as brainliest ans.

Attachments:
Answered by rohit301486
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\bold{\therefore Length\:of\:thread=7.5\:cm}}

\pink{\bold{\underline{\underline{Step-by-step\:explanation:}}}} </p><p>

\underline \bold{Given : }

\tt :\implies Mass\:of\:thread(M) = 10.2 \: g

\tt :\implies Cross \: section(A) = 0.1 \: cm ^{3}

\tt :\implies Density \: of \: mercury(D) = 13.6 \: g/cm

 \underline \bold{to \: find : }

 \tt :\implies Length \: of \: thread(L) = ?

  • Given Question

\bold{By \: using \: formula : }

\tt :\implies Density = \frac{Mass}{Volume} - - - - - (1)

\bold{For \: Finding \: Length}

\tt :\implies Volume = Cross \: section \: Area \times length

\tt :\implies V= A\times L

 \tt :\implies V = 0.1 \times L

\bold{Putting \: value \: of \: v\: in \: (1)}

\tt :\implies D = \frac{M}{0.1 \times L}

 \tt :\implies 13.6 = \frac{10.2}{0.1 \times L}

\tt :\implies 13.6 \times 0.1 \times L= 10.2

\tt :\implies L = \frac{ \cancel{10.2}}{ \cancel{1.36}}

\bold{ \tt :\implies L= 7.5 \: cm}

\bold{\therefore Length \: of \: thread \: is \: 7.5 \: cm}

Similar questions