Math, asked by athulyabijoy123, 6 months ago

a tv manufacturer reduces the price of a particular model by 10% every year. the current price of this model is 9000.what would be the price after 2 years

Answers

Answered by Anonymous
41

Given :

  • Current price of TV model = Rs.9000
  • It reduces every year = 10 %

 \\ \rule{200pt}{3pt}

To Find :

  • Price of TV after 2 years = ?

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

\large{\color{darkblue}{\dashrightarrow}} \: \: {\underline{\overline{\boxed{\red{\sf{ C.I = P \bigg[ 1 + \dfrac{R}{100} \bigg]^n - P }}}}}}

Where :

  • ➙ C.I = Decrease in cost
  • ➙ P = Present Cost
  • ➙ R = Rate of Decrease
  • ➙ n = Time

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Decrease in cost :

 {\longmapsto{\qquad{\sf{ C.I = P \bigg[ 1 + \dfrac{R}{100} \bigg]^n - P }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 9000 \bigg[ 1 + \dfrac{10}{100} \bigg]^2 - 9000 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 9000 \bigg[ 1 + \cancel\dfrac{10}{100} \bigg]^2 - 9000 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 9000 \bigg[ 1 + 0.10 \bigg]^2 - 9000 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 9000 \bigg[ 1.10  \bigg]^2 - 9000 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 9000 \times 1.10 \times 1.10 - 9000 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 9000 \times 1.21 - 9000 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ C.I = 10890 - 9000 }}}} \\ \\ \ {\qquad{\textsf{ Price decrease on the TV model = {\green{\sf{ ₹ \: 1890 }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Price after 2 years :

 {:\implies{\qquad{\sf{ Price{\small_{(After \: 2 \: years)}} = Price{\small_{(Present)}} - Decrease \: in \: Price }}}} \\ \\ \ {:\implies{\qquad{\sf{ Price{\small_{(After \: 2 \: years)}} = 9000 - 1890 }}}} \\ \\ \ {\qquad{\textsf{ Price of the TV after 2 years = {\orange{\sf{ ₹ \: 7110 }}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❝ Price of the TV model after 2 years will be 7110 . ❞

 \\ {\blue{\underline{\rule{75pt}{9pt}}}}{\color{yellow}{\underline{\rule{75pt}{9pt}}}}{\red{\underline{\rule{75pt}{9pt}}}}

Answered by brainly10038
19

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{ Question :-}}}}}}}}}

A tv manufacturer reduces the price of a particular model by 10% every year. the current price of this model is 9000.what would be the price after 2 years.

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{ Given :-}}}}}}}}}

  • CURRENT PRICE OF TV MODEL = Rs. 9,000
  • THE PRICE REDUCES EVERY YEAR BY 10%.

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{ To  \: Find :-}}}}}}}}}

  • PRICE OF TV AFTER 2 YEARS.

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{ Formula   \: Used :-}}}}}}}}}

⟼ \: C.I = P[1 +  \frac{R}{100} ]^{n}  - P

WHERE;

  • C.I = DECREASE IN COST.

  • P = PRESENT COST.

  • R = RATE OF DECREASE.

  • N = TIME.

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{  Solution :-}}}}}}}}}

THE DECREASE IN COST =

⟼ \: C.I = P[1 +  \frac{R}{100} ]^{n}  - P

⟼ \: C.I = \: 9000[1 +  \frac{10}{100} ]^{2}  - 9000

⟼ \: C.I = 9000[1 +  0.10]^{2}  - 9000

⟼ \: C.I = 9000[1.10]^{2}  - 9000

⟼ \: C.I = 9000 \times 1.10 \times 1.10  - 9000

⟼ \: C.I = 9000 \times 1.21  - 9000

⟼ \: C.I = 10890 - 9000

⟼ \: C.I = 1890

THE DECREASE IN COST = Rs. 1890

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{  Therefore :-}}}}}}}}}

THE PRICE AFTER 2 YEARS =

PRICE (AFTER 2 YEARS) = PRICE (PRESENT) - DECREASE IN PRICE

⟹ PRICE (AFTER 2 YEARS) = Rs. (9000 - 1890)

⟹ PRICE (AFTER 2 YEARS) = Rs. 7110

\large{\blue{\maltese \: \: {\pink{\underbrace{\underline{\red{\pmb{\sf{  Answer :-}}}}}}}}}

THE PRICE OF THE TV AFTER 2 YEARS IS Rs. 7110.

Similar questions