Math, asked by rschandela41, 1 year ago

A two digit no.is such that Product of its digits is 18 when 63 is added to the number the digits interchanges Thier place. Find the number

Answers

Answered by adarshhoax
9
Hey friend

here is your answer

assuming the number = 10a + b

so,
a × b = 18.


and
10a + b + 63 = 10b + a
9a - 9b = -63
9 ( a - b ) = -9 × 7
a - b = -7


so,
b = 18/a

a -  \frac{18}{a}  =  - 7 \\  {a}^{2}  - 18 = -  7a \\  {a}^{2}    + 7a - 18 = 0 \\  {a}^{2}   +  9a  -  2a - 18 = 0 \\ a(a  + 9)  -  2(a  +  9) = 0 \\ (a  + 9)(a  -  2) \\  \\ a =  - 9(invalid) \:  \\  \:  \:  \: or \: a =2\\  \:



so, the actual number = 29


glad to help you
hope it helps
thank you.
Answered by Anonymous
3

{\green {\boxed {\mathtt {☆Solution}}}}

  \rm \: let \: the \: tens \: and \: unit \: digit \: of \: the \: required \: number \: be \: x \: and \: y \: respectively \: then \\  \rm \: xy = 18 \implies \: y =  \frac{18}{x}   \\   \rm \: \purple {\: and \: (10x + y) - 63 = 10y + x }\\   \rm\implies \: 9x - 9y = 63 \implies \: x - y = 7 \:  \:  \:  \: .....(1) \\  \rm \orange{ \: putting \: y =  \frac{18}{x }  \: into \: (1) }\\  \rm \: x -  \frac{18}{x}  = 7 \\  \rm \: x {}^{2}   - 18 - 7x \implies \: x {}^{2}  - 7x - 18 \\  \rm  \implies \: x {}^{2}  - 9x + 2x - 18 = 0 \implies \: x(x - 9) + 2(x - 9) = 0 \\  \rm \implies(x - 9)(x + 2) = 0 \\  \rm \: x = 9 \: or \: x =  - 2 \:  \:  \:  \: ( but \: a \: digit \: cannot \: be \: negative) \\ \rm   \red {\:  \boxed{\therefore \: x = 9}} \\  \rm \: putting \: x = 9 \: in \: (1) we \: get \: y = 2 \\  \rm \: thus \: the \: tens \: digit \: is \: 9 \: and \: the \: unit \: digit \: is \: 2  \\  \rm hence \: the \: required \:  number \: is \: 92.....

Similar questions