Math, asked by manisha9137, 2 months ago

A two-digit number is 3 more than 4 times the sum of its digits. If 18 is added number, its digits are reversed. Find the number.​

Answers

Answered by santhipriya01
3

Answer:

21

please mark me as brainliest

Answered by Anonymous
1746

Given : A two-digit number is 3 more than 4 times the sum of its digits & If 18 is added number, its digits are reversed.

To Find : Find the number ?

_________________________

Solution : Let's the original number in the form of 10x + y, where x is the digit in the tenth place and y in its unit place. When the digits are reversed the number will be in the form 10x + y.

~

\pmb{\sf{\underline{According~ to ~the~ ~Given ~Question~:}}}

~

\qquad{\sf:\implies{10x~+~y~=~3~+~40\bigg(x~+~y\bigg)}}

\qquad{\sf:\implies{10x~+~y~=~3~+~4x~+~4y}}

\qquad{\sf:\implies{10x~-~4x~=~3~+~4y~-~y}}

\qquad{\sf:\implies{6x~=~3~+~3y}}

\qquad{\sf:\implies{6x~-~3y~=~3\qquad\qquad\bigg\lgroup{Eqⁿ~1}\bigg\rgroup}}

~

\qquad{\sf:\implies{\bigg(10x~+~y\bigg)~+~18~=~\bigg(10y~+~x\bigg)}}

\qquad{\sf:\implies{\bigg(10x~+~y\bigg)~-~\bigg(10y~+~x\bigg)~=~- 18}}

\qquad{\sf:\implies{10x~+~y~-~10y~-~x~=~- 18}}

\qquad{\sf:\implies{9x~-~9y~=~- 18}}

\qquad{\sf:\implies{9\bigg(x~-~y\bigg)~=~- 18}}

\qquad{\sf:\implies{\bigg(x~-~y\bigg)~=~\dfrac{- 18}{9}}}

\qquad{\sf:\implies{\bigg(x~-~y\bigg)~=~- 2~~~\qquad\bigg\lgroup{Eqⁿ~2}\bigg\rgroup}}

~

\qquad{\sf:\implies{x~-~y~=~- 2}}

\qquad{\sf:\implies{y~=~x~+~2~~~~~~~~~~~~\qquad\bigg\lgroup{Eqⁿ~3}\bigg\rgroup}}

~

  • On putting this values of equation 3 in equation 1 we get,

~

\qquad{\sf:\implies{6x~-~3y~=~3}}

\qquad{\sf:\implies{6x~-~3\bigg(x~+~2\bigg)~=~3}}

\qquad{\sf:\implies{6x~-~3x~-~6~=~3}}

\qquad{\sf:\implies{3x~-~6~=~3}}

\qquad{\sf:\implies{3x~=~3~+~6}}

\qquad{\sf:\implies{3x~=~9}}

\qquad{\sf:\implies{x~=~\dfrac{9}{3}}}

\qquad{\sf:\implies{x~=~\cancel\dfrac{9}{3}}}

\qquad:\implies{\underline{\boxed{\frak{\purple{x~=~3}}}}}

~

  • Putting the values of x in equation 2

~

\qquad{\sf:\implies{x~-~y~=~- 2}}

\qquad{\sf:\implies{3~-~y~=~- 2}}

\qquad{\sf:\implies{y~=~3~+~2}}

\qquad:\implies{\underline{\boxed{\frak{\pink{y~=~5}}}}}

~

Therefore,

  • {\sf{10~×~3~+~5~=~35}}

~

Hence,

\therefore\underline{\sf{The ~original ~number ~is~\bf{\underline{35}}}}

Similar questions