Math, asked by jaiswalsangitakumari, 9 months ago

A two digit number is 4 times the sum of its digits. If 18 is added to the number, the digits are reversed. Find the number.

Answers

Answered by tejastorke
3

Step-by-step explanation:

I think u got help

pls mark as brilliantest......

Attachments:
Answered by Anonymous
14

Given :

  • A two digit number is 4 times the sum of its digits.
  • If 18 is added to the number, the digits are reversed.

To Find :

  • The Number.

Solution :

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number = (10x + y)

Case 1 :

The number, (10x + y) is 4 times the sum of the digits (x+y).

Equation :

\longrightarrow \sf{10x+y=4(x+y)}

\longrightarrow \sf{10x+y=4x+4y}

\longrightarrow \sf{10x-4x=4y-y}

\longrightarrow \sf{6x=3y}

\sf{x\:=\dfrac{3y}{6}\:\:\:(1)}

Case 2 :

If we add 18 to the number (10x + y) the places of digits are reversed.

° Reveresed Number = (10y + x)

Equation :

\longrightarrow \sf{10x+y+18=10y+x}

\longrightarrow \sf{10x+y-10y-x=-18}

\longrightarrow \sf{9x-9y=-18}

Divide throughout by 9,

\longrightarrow \sf{\cancel{\dfrac{9}{9}}x\:-\:\cancel\dfrac{9}{9}y\:=\:\cancel\dfrac{-18}{9}}

\longrightarrow \sf{x-y=-2}

From (1), x = 3y/6

\longrightarrow \sf{\dfrac{3y}{6}\:-\:y=-2}

\longrightarrow \sf{\dfrac{3y-6y}{6}=-2}

\longrightarrow \sf{\dfrac{-3y}{6}=-2}

\longrightarrow \sf{-3y=-12}

\longrightarrow \sf{y=\dfrac{-12}{-3}}

\longrightarrow \sf{y=4}

Substitute, y = 4 in equation (1),

\longrightarrow \sf{x=\dfrac{3y}{6}}

\longrightarrow \sf{x=\dfrac{3\:\times\:4}{6}}

\longrightarrow \sf{x=\cancel\dfrac{12}{6}}

\longrightarrow \sf{x=2}

Number :

\large{\boxed{\sf{\red{Ten's\:digit\:=\:x\:=\:2}}}}

\large{\boxed{\sf{\purple{Unit's\:digit\:=\:y\:=\:4}}}}

\large{\boxed{\sf{\red{Original\:Number\:=\:10x+y\:=\:10(2)+4=20+4=24}}}}

Similar questions