A two digit number is 7 times the sum of its digits and is also equal to 12 less than three times the product of its digits find the number
Answers
a two digit number is 7 times the sum of its digits and is also equal to 12 less than three times the product of its digit.
Let say number = xy
Value of number = 10x + y
Sum of digit = x + y
10x + y = 7 ( x + y)
=> 3x = 6y
=> x = 2y
Product of digits = xy
Three times the product of digits = 3xy
10x + y = 3xy - 12
Putting x = 2y
=> 20y + y = 6y² - 12
=> 6y² -21 y - 12 = 0
=> 2y² - 7y - 4 = 0
=> 2y² - 8y + y - 4 = 0
=> 2y(y - 4) + 1(y -4) = 0
=> (2y + 1)(y -4) = 0
=> y = 4
x = 2y = 8
Number = 84
Click to let others know, how helpful is it
4.0
38 votes
THANKS 50
Report
Tru90Ambitious
Answer:
Step-by-step explanation:
a two digit number is 7 times the sum of its digits and is also equal to 12 less than three times the product of its digit.
Let say number = xy
Value of number = 10x + y
Sum of digit = x + y
10x + y = 7 ( x + y)
=> 3x = 6y
=> x = 2y
Product of digits = xy
Three times the product of digits = 3xy
10x + y = 3xy - 12
Putting x = 2y
=> 20y + y = 6y² - 12
=> 6y² -21 y - 12 = 0
=> 2y² - 7y - 4 = 0
=> 2y² - 8y + y - 4 = 0
=> 2y(y - 4) + 1(y -4) = 0
=> (2y + 1)(y -4) = 0
=> y = 4
x = 2y = 8
Number = 84
Click to let others know, how helpful is it
Answer: