English, asked by sainithinjinukala, 11 months ago

A two-digit number is 7 times the sum of its digits. The number formed by reversing its

digits is 18 jess than the original number. What is the number?

Answers

Answered by varshayadavkgr2005
0

Explanation:

this is Answer of your question

Attachments:
Answered by Anonymous
69

Given :

  • A two-digit number is 7 times the sum of its digits.
  • Number formed by reversing its digits is 18 jess than the original number.

To Find :

  • The two digit number

Solution :

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number = (10x + y)

Case 1 :

The two digit number i.e (10x + y) is 7 times the sum of the digits i.e (x+y)

Equation :

\longrightarrow \sf{10x+y=7(x+y)}

\longrightarrow \sf{10x+y=7x+7y}

\longrightarrow \sf{10x-7x=7y-y}

\longrightarrow \sf{3x=6y}

\sf{x=\dfrac{6y}{3}\:\:\:(1)}

Case 2 :

The number formed when the digits of the two digit number is reversed is 18 less than the original two digit number.

Reveresed Number = (10y + x)

Equation :

\longrightarrow \sf{10y+x=10x+y-18}

\longrightarrow \sf{10y-y=10x-x-18}

\longrightarrow \sf{9y=9x-18}

\longrightarrow \sf{9x-18=9y}

\longrightarrow \sf{9x-9y=18}

Divide throughout by 9,

\sf{\cancel{\dfrac{9}{9}}x\:-\:\cancel{\dfrac{9}{9}}y\:=\:\cancel\dfrac{18}{9}}

\longrightarrow \sf{x-y=2}

From equation (1), x = 6y/3,

\longrightarrow \sf{\dfrac{6y}{3}\:-\:y=2}

\longrightarrow \sf{\dfrac{6y-3y}{3}=2}

\longrightarrow \sf{\dfrac{\cancel{3}y}{\cancel{3}}\:\:=2}

\longrightarrow \sf{y=2}

Substitute, y = 2 in equation (1),

\longrightarrow \sf{x=\dfrac{6y}{3}}

\longrightarrow \sf{x=\dfrac{6\:\times\:2}{3}}

\longrightarrow \sf{x=\cancel\dfrac{12}{3}}

\longrightarrow \sf{x=4}

\large{\boxed{\sf{\red{Ten's\:digit\:=\:x\:=\:2}}}}

\large{\boxed{\sf{\red{Unit's\:digit\:=\:y\:=\:4}}}}

\large{\boxed{\sf{\purple{Original\:Number\:=\:(10x+y)=10(2)+4=20+4=24}}}}

Similar questions