A two-digit number is equal to 7 times the sum of its digits. The number formed by reversing its digits is 18 less than the original number. Find the original number.
Answers
Answered by
1
Answer:
the required number is 24.
Attachments:
Answered by
0
Let the digits be X and Y.
so,the original no. is XY=10X+Y
According to the question,
7 (X+Y)=10X+Y
7X+7Y=10X+Y
0=10X+Y-7X-7Y
0=3X-6Y..............(¡)
Now,in second statement,
XY-YX=18
It means,
10X+Y-10Y-X=18
9X-9Y=18
9(X-Y)=18
X-Y=18/9
X-Y=2
X=2+Y.............(¡¡)
Put eq.(¡¡) in eq.(¡)
3X-6Y=0
3(2+Y)-6Y=0
6+3Y-6Y=0
6-3Y=0
6=3Y
6/3=Y
Y=2
Put value of Y in eq.(¡¡)
X=2+Y
X=2+2
X=4
Hence,X=4,Y=2
Similar questions