Math, asked by sakshay7902, 7 months ago

A two digit number is such that its tens digit is 6 more than the unit's digit. also the teens digit is three times the units digit. Find the number.

Answers

Answered by atahrv
15

Answer :

\large{ \star\:\:\boxed{\bf{The\:Required\:Number\:is\:93\:.}}\:\:\star }

Explanation :

Given :–

  • The tens digit is 6 more than the ones(unit) digit .
  • Tens digit is 3 times ones(unit) digit .

To Find :–

  • The required number .

Solution :–

Let the Tens digit of the Number be x and the Ones digit be y .

☆ According to the First Condition :-

\implies\sf{x\:=\:y\:+\:6}\:\:-----\bf{(1)}

☆ According to the Second Condition :-

\implies\sf{x\:=\:3y}\:\:-----\bf{(2)}

Now , putting the value of 'x' from Equation(2) in Equation(1) :-

\rightarrow\sf{3y\:=\:y\:+\:6}

\rightarrow\sf{3y\:-\:y\:=\:6}

\rightarrow\sf{2y\:=\:6}

\rightarrow\sf{y\:=\:\dfrac{6}{2} }

\rightarrow\boxed{\bf{y\:=\:3 }}

Putting this value of 'y' in Equation(1) :-

\rightarrow\sf{x\:=\:3\:+\:6}

\rightarrow\boxed{\bf{x\:=\:9}}

★ As we know that a two - digit number is in the form of :

→ 10(x) + (y)

→ 10(9) + (3)

→ 90 + 3

93

∴ The Required Number is 93 .


Anonymous: Nice :)
Answered by Anonymous
226

\:\:\Large{\underline{\underline{\bf{\red{Given}}}}}\: :

  • The tens digit is 6 more than the ones(unit) digit
  • Tens digit is 3 times ones(unit) digit

\:\:\Large{\underline{\underline{\bf{\blue{To\:Find}}}}}\: :

  • The required number

\:\:\Large{\underline{\underline{\bf{\pink{Solution}}}}}\: :

Let,

  • The Tens digit of the Number be x
  • The Ones digit be y

\leadsto\bf\red{x\:=\:y\:+\:6}\:\:.........(1)

\leadsto\bf\red{x\:=\:3y}\:\:.........(2)

Putting 'x' value from Eq (2) in Eq (1) :-

\to\:\:\sf\purple{3y\:=\:y\:+\:6}

\to\:\:\sf\green{3y\:-\:y\:=\:6}

\to\:\:\sf\purple{2y\:=\:6}

\to\:\:\sf\green{y\:=\:\dfrac{\cancel{6}^{\:\:3}}{\cancel{2}_{\:1}} }

\to\:\:\sf\underline\red{y\:=\:3 }

Putting value of 'y' in Eq (1) :-

\mapsto\:\:\sf\purple{x\:=\:3\:+\:6}

\mapsto\:\:\sf\underline\red{x\:=\:9}

Now, finding the required number. As we know that two digit number is in the form of :

\leadsto\:\:\sf\blue{ 10(x)\:+\:(y)}

\leadsto\:\:\sf\orange{ 10(9)\:+\:(3)}

\leadsto\:\:\sf\blue{ 90\:+\:3}

\leadsto\:\:\sf\orange{ 93}

{\underline{\underline{\bf{\red{The\: Required\: Number\: is \:93 }}}}}


Anonymous: Perfect :)
Similar questions