Math, asked by mareeswaran16, 10 months ago


. A two digit number is such that the product of its digits is 24. When 18 is
subtracted from this number, the digits interchange their places. Find the number.

Answers

Answered by MaheswariS
29

A two digit number is such that the product of its digits is 24. When 18 issubtracted from this number, the digits interchange their places. Find the number.

\underline{\textbf{Given:}}

\textsf{A two digit number is such that the product of}

\textsf{its digits is 24.}

\textsf{When 18 is subtracted from this number,}

\textsf{the digits interchange their places.}

\underline{\textbf{To find:}}

\textsf{The number}

\underline{\textbf{Solution:}}

\textsf{Let the two digit number be 10x+y}

\textsf{Product of digits = 24}

\implies\mathsf{xy=24} --------------(1)

\textsf{When 18 is subtracted,}

\mathsf{10x+y-18=10y+x}

\mathsf{9x-9y=18}

\mathsf{x-y=2}

\mathsf{x=y+2} -------------(2)

\textsf{Using (2) in (1), we get}

\mathsf{(y+2)y=24}

\mathsf{y^2+2y-24=0}

\mathsf{(y+6)(y-4)=0}

\mathsf{y=-6,4}

\mathsf{But\;y\;cannot\;be\;negative\;\implies\;y=4}

\mathsf{when\;y=4,\;x=y+2}

\implies\mathsf{x=4+2}

\implies\mathsf{x=6}

\mathsf{Now,}

\mathsf{10x+y=10(6)+4=60+4=64}

\therefore\textbf{The required number is 64}

Answered by ms1272341
1

Answer:

Step-by-step explanation:

Similar questions