Math, asked by BrainlyHelper, 1 year ago

A two-digit number is such that the product of its digits is 8. When 18 is subtracted from the number, the digits interchange their places. Find the number.

Answers

Answered by nikitasingh79
72

SOLUTION :

Let the two digit number be 10x + y

Given : product of its digits(xy) = 8

xy = 8...................(1)

When 18 is subtracted from the number, the digits interchange their places

10x + y - 18 = 10y + x

10x + y - 10y - x = 18

9x - 9y = 18

9(x - y) = 18

x - y = 18/9

x - y = 2

x = 2 + y……………….(2)

Put this value of x in eq 1.

xy = 8

(2 + y)y = 8

2y + y² = 8

y²  + 2y - 8 = 0

y² +  4y - 2y - 8 = 0

[By middle term splitting]

y(y + 4) - 2(y + 4) = 0

(y - 2 ) ( y + 4) = 0

(y - 2 ) = 0   or ( y + 4) = 0

y = 2  or y = - 4

Since, a digit can't be negative, so y ≠ - 4.

Therefore , y = 2

Put this value of y in eq 1,

xy =8

x× 2 = 8

x = 8/2 = 4

x = 4

Required number = 10x + y  

= 10(4) + 2

= 40 + 2

Required number = 42

Hence, the Required two digit number is 42.

HOPE THIS ANSWER WILL HELP YOU...

Answered by BrainlyQueen01
65

Answer :


42


Step-by-step explanation :


Let the digit at unit's place be x and tens place be y.


∴ Original number = 10x + y


According to the question ;


Product of numbers is 8.


⇒ xy = 8           ...... (i)


When 18 is subtracted from the number, the digits interchange their places.


⇒ 10x + y - 18 = 10y + x


⇒ 10x - y - 10y - x = 18


⇒ 9x - 9y = 18


⇒ 9 ( x - y ) = 18


⇒ x - y = 2


⇒ x = 2 + y         ..... (ii)


Putting the value of (ii) in eqⁿ (i),


xy = 8


⇒ y ( 2 + y ) = 8


⇒ 2y + y² = 8


⇒ y² + 2y - 8 = 0


⇒ y² + 4y - 2y - 8 = 0


⇒ y ( y + 4 ) - 2 ( y + 4 ) = 0


⇒ ( y + 4 ) ( y - 2 ) = 0


⇒ ( y + 4 ) = 0 or (  y - 2 ) = 0


⇒ y = - 4 or y = 2


Since, the digits cannot be in the negative form, hence the value of y = 2.


Putting the value of y in eqⁿ (ii),


x = 2 + y


⇒ x = 2 + 2


⇒ x = 4


Therefore, the number is ;


Original number = 10x + y


                          = 10 * 4 + 2


                          = 40 + 2


                         = 42


Hence, the required number is 42.


krishnachaudhary36: how does a solve the sum
Similar questions