Math, asked by doctorhasnat01, 2 months ago

A two digit number is such that the product of its digits us 8 ,if 18is added to the number the digits interchange. Their places.find the number?​

Answers

Answered by tusharbansal393
0

Step-by-step explanation:

Let the no. be 10x+y

Here x × y = 8

x= 8/y

So, acc. to question

10x+y+18= 10y+x

9x-9y+18=0

9(x-y+2)=0

x-y+2=0/9

x-y+2=0

(8/y)-y+2=0

8-y²+2y=0×y

-(y²-2y-8) =0

y²-4y+2y-8=0

y(y-4) +2(y-4) =0

(y+2) (y-4) =0

y=-2 y=4

If y= -2

Then x= 8/-2 = -4

If y = 4

Then x= 8/4= 2

So, the no. is -42 or 24

Mark me as the Brainliest

Answered by Anonymous
3

Step-by-step explanation:

Let unit's digit be x

 \therefore \: \tt ten's \: digit =  \frac{8}{x}  \\

 \sf \: Original \: number = 10 \times  \frac{8}{x}  + x \\  \implies \:   \tt \: \frac{80}{x}  + x \\ \implies \tt \: \frac{ 80 +   \tt{ x}^{2}  } {x} \ \ \\  \\\ \tt \N umber \: after \: interchanging \: its \: digits \\  \implies \:  \tt10x +  \frac{8}{x}  \\ \tt  \implies \:  \frac{ 10 {x }^{2}  + 8 }{x}\\  \\  \tt \: ACQ \\  \therefore  \tt\:  \frac{ 10 {x}^{2}  + 8}{x} =  \frac{80 +  {x}^{2}}{x}  + 18 \\  \tt \longrightarrow \:   10 {x}^{2}  + 8 = 80 +  {x}^{2}  + 18x \\  \tt \longrightarrow \: 9 {x }^{2}  - 18x - 72 = 0 \\ \tt \longrightarrow {x }^{2}  - 2x - 8 = 0 \\ \tt \longrightarrow {x }^{2}  - 4x + 2x - 8  = 0 \\ \tt \longrightarrow \: x(x - 4) + 2(x - 4) = 0 \\ \tt \longrightarrow(x - 4)(x - 2) = 0 \\  \\  \tt \: If \:  x - 4 = 0 \\ \tt x = 4 \\  \\ \tt \:  Unit's \: digit = 4 \\ \tt \:  Ten's \: digit =  \frac{8}{4}  = 2 \\ \tt \: \red{Number  = 24}

Similar questions