Math, asked by rajkryadavhzb, 7 months ago

A two digit number when increase by 75% then its

digits gets interchanged. If difference between both

digits is 3 then find the original number?​

Answers

Answered by MagicalBeast
8

Question : A two digit number when increase by 75% then its digits gets interchanged. If difference between both digits is 3 then find the original number?

To find : 2 digit number

Let :

  • two digit number = ( 10x + y )

Given :

  • y - x = 3 { considering y > x } ..........1
  • when increased by 75% digits get interchanged , i.e., (10y+x)

Solution :

original number is (10x+y)

according to question ,

(10x+y) + 75% of (10x+y) = ( 10y+3)

 =  >  \: (10x + y) \:  +  \:  \frac{75}{100} (10x + y) = (10y + x) \\  \\  =  > (10 + y)(1 +  \frac{75}{100} ) = (10y + x) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  > (10x + y)(1 +  \frac{3}{4} ) \:  =  \: (10y + x) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  > (10x + y)(  \frac{7}{4} ) = (10y + x) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{ taking LCM }

 =  > (10x + y)(7) \:  =  \: 4(10y + x)

=> 70x + 7y = 40y + 4x

=> 70x - 4x = 40y - 7y

=> 66x = 33y

=> x = (33/66)y

=> x = (1/2)y

putting value of x in equation 1

 =  > y \:  -  \:  \frac{1}{2} y \:  =  \: 3 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  > y( 1 - \frac{1}{2} ) \:  =  \: 3  \\  \\taking \: lcm \\   =  >  \: y( \frac{(1 \times 2) - (1 \times 1)}{2} ) = 3 \\  \\  =  > y( \frac{(2 - 1)}{2} ) = 3 \\  \\  =  > y( \frac{1}{2} ) = 3 \\  \\  \\  =  > y = 3 \times ( \frac{2}{1} ) \\  \\  =  > y \:  =  \: 6

therefore

x \:  =  \:  \frac{1}{2} y \\  \\ x \:  =  \:  \frac{1}{2}  \times 6 \\  \\ x \:  = \:  3 \:  \:  \:  \:

therefore number =>

(10x + y) = { (10×3) + 6 }

=> (30+6)

=> 36

Answer : original number = 36

Similar questions