Math, asked by Such5960, 11 months ago

A two digit positive number is such that the product of the digits is 24 if 18 is subtracted from the number the digits are reversed find the numbers

Answers

Answered by mddilshad11ab
84

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Given:}}}}

  • A two digit positive number is such that the product of the digits is 24 if 18 is subtracted from the number the digits are reversed

\large{\underline{\red{\rm{Let:}}}}

  • \sf{The\: ones\: digit=X}
  • \sf{The\: tens\: digit=Y}
  • \sf{The\: Number=10Y+X}

\small{\underline{\red{\rm{As\:per\:the\: above\: information:}}}}

\sf{The\: product\:of\:its\: digits=24}

\sf{\implies XY=24}

\sf\green{\implies XY=24-----(i)}

\sf{\implies X=\dfrac{24}{Y}}

\sf{If\:18\:is\:subtracted\: from\:the\: number\:the\: digits\:are\: reversed}

\sf{\implies (1OY+X)-18=10X+Y}

\sf{\implies 10X-X+Y-1OY=-18}

\sf{\implies 9X-9Y=-18}

\sf{\implies Dividing\:by\:9\:on\:both\: side}

\sf\green{\implies X-Y=-2---(ii)}

\sf{\implies now,\: putting\:the\:value\:of\:x}

\sf{\implies \dfrac{24}{Y}-Y=-2}

\sf{\implies \dfrac{24-Y^2}{Y}=-2}

\sf{\implies Y^2-2Y-24=0}

\sf{\implies Y^2-6Y+4Y-24=0}

\sf{\implies Y(Y-6)+4(Y-6)=0}

\sf{\therefore Y=6\:and\:-4}

  • Negative value can't be kept here so the value of Y=6 putting it in EQ 1

\sf{\implies X*6=24}

\sf{\implies 6X=24}

\sf{\implies X=4}

Hence,

\rm\green{\implies The\: Number=10Y+X=10*6+4=64}

Answered by shadowsabers03
31

Since the product of the digits is \sf{24,} if one digit is taken as \sf{x,} then the other digit will be \sf{\dfrac{24}{x}.}

Hence let our two digit number be \sf{10x+\dfrac{24}{x}.} Or,

\longrightarrow\sf{10x+\dfrac{24}{x}=\dfrac{10x^2+24}{x}}

So the two digit number obtained on reversing the digits will be,

\longrightarrow\sf{10\left(\dfrac{24}{x}\right)+x=\dfrac{240}{x}+x}

\longrightarrow\sf{10\left(\dfrac{24}{x}\right)+x=\dfrac{240+x^2}{x}}

This number is obtained on subtracting 18 from our original number. Thus,

\longrightarrow\sf{\dfrac{10x^2+24}{x}-18=\dfrac{240+x^2}{x}}

\longrightarrow\sf{\dfrac{10x^2+24}{x}-\dfrac{240+x^2}{x}=18}

\longrightarrow\sf{\dfrac{10x^2+24-240-x^2}{x}=18}

\longrightarrow\sf{\dfrac{9x^2-216}{x}=18}

\longrightarrow\sf{9x^2-18x-216=0}

\longrightarrow\sf{x^2-2x-24=0}

\longrightarrow\sf{x^2-6x+4x-24=0}

\longrightarrow\sf{x(x-6)+4(x-6)=0}

\longrightarrow\sf{(x-6)(x+4)=0}

Since \sf{x} is a positive integer,

\longrightarrow\sf{x=6}

And,

\longrightarrow\sf{\dfrac{24}{x}=4}

Hence our two digit number is,

\longrightarrow\sf{\underline{\underline{10x+\dfrac{24}{x}=64}}}

And the two digit number obtained on reversing the digits is,

\longrightarrow\sf{\underline{\underline{10\left(\dfrac{24}{x}\right)+x=46}}}

Similar questions