Physics, asked by dipalikulkarni893, 5 months ago

A uniform conducting wire of the length and radius ( = (10 + 0.1) cm and r = (1 0.01) cm
respectively, is cut to form a resistor. The maximum percentage error in the resistance is (assume
that the resistivity of the material of the wire is known very accurately)
1 %
O 2 %
O
3 %
4 %​

Answers

Answered by pjena5063
0

Answer:

1°\°

Explanation:

  1. happy new year to you and your family and friends
Answered by nitinkumar9lm
0

Answer:

A high percentage of error in the resistance states 1 % %.

Explanation:

  • The resistance of a wire depends on the cross-sectional area and the length of the wire.
  • The resistivity depends on the material of the wire.
  • The variation in resistance of a conductor is there with temperature change.

The formula for resistance is given as:

R=\frac{\alpha  *L}{A}

where, \alpha is the resistivity.

            L is the length.

            A is the cross-sectional area.

Step 1:

Resistance of wire without error =\frac{\alpha *(10 cm)}{\pi *(1 cm)^{2} }  ohm

                                                     =\frac{10\alpha }{\pi  }  ohm

Resistance of wire with error  =\frac{\alpha *(10 .1cm)}{\pi *(1.01 cm)^{2} }  ohm

                                                 =\frac{10.1\alpha }{1.0201\pi  }  ohm

Step 2:

Error is given by  =\frac{10\alpha }{\pi  }-\frac{10.1\alpha }{1.0201\pi  }  ohm

                            =0.099*\frac{\alpha }{\pi }  ohm

So, the error percentage is given by =\frac{0.099*\frac{\alpha }{\pi }}{\frac{10\alpha }{\pi  }} * 100 %

                                                             =\frac{0.099}{10}  *100  %

                                                             ≈  1 % %

Hence, a high percentage of error in the resistance states 1 % %.

Similar questions