Math, asked by kwhifcaro, 4 months ago

a upon b + B upon a =2 then a cube minus b cube is equal to​

Answers

Answered by mathdude500
5

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{\dfrac{a}{b}  + \dfrac{b}{a}  = 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{ {a}^{3} -  {b}^{3}  }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

 \tt \:  ⟼ \dfrac{a}{b}  + \dfrac{b}{a}  = 2

 \tt \:  ⟼ \dfrac{ {a}^{2} +  {b}^{2}  }{ab} = 2

 \tt \:  ⟼  {a}^{2}  +  {b}^{2}  = 2ab

 \tt \:  ⟼  {a}^{2}  +  {b}^{2}  - 2ab = 0

\tt\implies \: {(a - b)}^{2}  = 0

\bf\implies \:a - b = 0

\tt\implies \:a = b

 \tt \:  ⟼ Now,  \: Consider  \:  \:  {a}^{3}  -  {b}^{3}

 \tt \:  ⟼  {a}^{3}  -  {a}^{3}  \:  \:  \: ( \because \: a \:  =  \: b)

 \tt \:  ⟼ 0

\tt\implies \: {a}^{3}  -  {b}^{3}  = 0

Similar questions