Math, asked by pilas9385, 9 months ago

A value of n for which (1+i ) Power n - (l-i) Power n =zero

Answers

Answered by pulakmath007
10

\huge\boxed{\underline{\underline{\green{Solution}}}}

COMPLEX NUMBER

A Complex Number is number which can be expressed in the form a + ib

where a & b are a real numbers

i = Complex Number satisfying  {i}^{2}  = -  1

  \displaystyle \: \hookrightarrow \: TO DETERMINE

A value of n such that  \displaystyle \:  {( 1 + i)}^{n}  + {( 1  -  i)}^{n}  = 0

  \displaystyle \: \hookrightarrow \: CALCULATION

Taking n = 1

 \displaystyle \:  {( 1 + i)}^{n}  + {( 1  -  i)}^{n}

  = \displaystyle \:  {( 1 + i)}^{1}  + {( 1  -  i)}^{1}

 =  \displaystyle \:  ( 1 + i)  + ( 1  -  i) = 2 \ne \: 0

Taking n = 2

 \displaystyle \:  {( 1 + i)}^{n}  + {( 1  -  i)}^{n}

  = \displaystyle \:  {( 1 + i)}^{2}  + {( 1  -  i)}^{2}

 =  \displaystyle \:  ( 1 + 2i +  {i}^{2} )  + ( 1  -  2i +  {i}^{2} )

 \displaystyle \:   = 1 + 2i - 1 + 1 - 2i - 1

 = 0

  \displaystyle \: \hookrightarrow \: RESULT

Hence 2 is least value of n such that

 \displaystyle \:  {( 1 + i)}^{n}  + {( 1  -  i)}^{n}  = 0

Answered by jiya91729
0

Answer:

COMPLEX NUMBER

A Complex Number is number whichcan be expressed in the form a + iba+ib

where a & b are a real numbers

i =i= Complex Number satisfying {i}^{2} = - 1i2=−1

\displaystyle \: \hookrightarrow \:↪ TO DETERMINE

A value of n such that \displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n} = 0(1+i)n+(1−i)n=0

\displaystyle \: \hookrightarrow \:↪ CALCULATION

Taking n = 1

\displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n}(1+i)n+(1−i)n

= \displaystyle \: {( 1 + i)}^{1} + {( 1 - i)}^{1}=(1+i)1+(1−i)1

= \displaystyle \: ( 1 + i) + ( 1 - i) = 2 \ne \: 0=(1+i)+(1−i)=2=0

Taking n = 2

\displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n}(1+i)n+(1−i)n

= \displaystyle \: {( 1 + i)}^{2} + {( 1 - i)}^{2}=(1+i)2+(1−i)2

= \displaystyle \: ( 1 + 2i + {i}^{2} ) + ( 1 - 2i + {i}^{2} )=(1+2i+i2)+(1−2i+i2)

\displaystyle \: = 1 + 2i - 1 + 1 - 2i - 1=1+2i−1+1−2i−1

= 0=0

\displaystyle \: \hookrightarrow \:↪ RESULT

Hence 2 is least value of n such that

\displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n} = 0(1+i)n+(1−i)n=0

Similar questions