A value of n for which (1+i ) Power n - (l-i) Power n =zero
Answers
COMPLEX NUMBER
A Complex Number is number which can be expressed in the form
where a & b are a real numbers
Complex Number satisfying
TO DETERMINE
A value of n such that
CALCULATION
Taking n = 1
Taking n = 2
RESULT
Hence 2 is least value of n such that
Answer:
COMPLEX NUMBER
A Complex Number is number whichcan be expressed in the form a + iba+ib
where a & b are a real numbers
i =i= Complex Number satisfying {i}^{2} = - 1i2=−1
\displaystyle \: \hookrightarrow \:↪ TO DETERMINE
A value of n such that \displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n} = 0(1+i)n+(1−i)n=0
\displaystyle \: \hookrightarrow \:↪ CALCULATION
Taking n = 1
\displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n}(1+i)n+(1−i)n
= \displaystyle \: {( 1 + i)}^{1} + {( 1 - i)}^{1}=(1+i)1+(1−i)1
= \displaystyle \: ( 1 + i) + ( 1 - i) = 2 \ne \: 0=(1+i)+(1−i)=2=0
Taking n = 2
\displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n}(1+i)n+(1−i)n
= \displaystyle \: {( 1 + i)}^{2} + {( 1 - i)}^{2}=(1+i)2+(1−i)2
= \displaystyle \: ( 1 + 2i + {i}^{2} ) + ( 1 - 2i + {i}^{2} )=(1+2i+i2)+(1−2i+i2)
\displaystyle \: = 1 + 2i - 1 + 1 - 2i - 1=1+2i−1+1−2i−1
= 0=0
\displaystyle \: \hookrightarrow \:↪ RESULT
Hence 2 is least value of n such that
\displaystyle \: {( 1 + i)}^{n} + {( 1 - i)}^{n} = 0(1+i)n+(1−i)n=0