Math, asked by madhav5245, 1 month ago

A variable complex number z=x+iy is such that the principal argument of (z-1)/(z+1) is pie/4. Show that x^2+y^2-2y-1=0.

 \boxed{\red{\bf\: moderators \: or \: brainly \: stars \: please \: answer \: this}}


Answers

Answered by jiahpatni
4

Answer:

HOPE IT HELPS THANK YOU PLZ MARK ME AS BRAINLIST

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:z = x + iy

Now, Consider

\rm :\longmapsto\:\dfrac{z - 1}{z + 1}

\rm \:  =  \:\dfrac{x + iy - 1}{x + iy + 1}

\rm \:  =  \:\dfrac{x  - 1+ iy}{(x + 1) + iy}

On rationalizing the denominator, we get

\rm \:  =  \:\dfrac{x  - 1+ iy}{(x + 1) + iy}  \times \dfrac{(x + 1) - iy}{(x + 1) - iy}

\rm \:  =  \:\dfrac{( {x}^{2} - 1) + iy(x + 1) - iy(x - 1) -  {i}^{2} {y}^{2} }{ {(x + 1)}^{2}  -  {i}^{2}  {y}^{2} }

\red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\rm \:  =  \:\dfrac{ {x}^{2} - 1 + iy(x + 1 - x + 1) +  {y}^{2} }{ {(x + 1)}^{2}  +  {y}^{2} }

\red{\bigg \{ \because \:  {i}^{2} =  -  \: 1 \bigg \}}

\rm \:  =  \:\dfrac{ {x}^{2} +  {y}^{2}   - 1 + 2iy}{ {(x + 1)}^{2} +  {y}^{2}  }

\rm \:  =  \:\dfrac{ {x}^{2} +  {y}^{2}   - 1}{ {(x + 1)}^{2} +  {y}^{2}  }  \:  + i \: \dfrac{2y}{ {(x + 1)}^{2}  +  {y}^{2} }

Thus,

\rm :\longmapsto\:\dfrac{z - 1}{z + 1}  =  \:\dfrac{ {x}^{2} +  {y}^{2}   - 1}{ {(x + 1)}^{2} +  {y}^{2}  }  \:  + i \: \dfrac{2y}{ {(x + 1)}^{2}  +  {y}^{2} }

We know,

 \boxed{ \bf{ \: If \: z = x + iy, \: then \: arg(z) =  {tan}^{ - 1}\dfrac{y}{x}}}

So,

\rm :\longmapsto\:arg\bigg[\dfrac{z - 1}{z + 1}\bigg] =  {tan}^{ - 1}\bigg[\dfrac{2y}{ {x}^{2}  +  {y}^{2}  - 1} \bigg]

But it is given that,

\rm :\longmapsto\:arg\bigg[\dfrac{z - 1}{z + 1}\bigg] =  \dfrac{\pi}{4}

\rm :\longmapsto\: {tan}^{ - 1}\bigg[\dfrac{2y}{ {x}^{2}  +  {y}^{2}  - 1} \bigg] = \dfrac{\pi}{4}

\rm :\longmapsto\: \dfrac{2y}{ {x}^{2}  +  {y}^{2}  - 1} =tan \dfrac{\pi}{4}

\rm :\longmapsto\: \dfrac{2y}{ {x}^{2}  +  {y}^{2}  - 1}  = 1

\rm :\longmapsto\: {x}^{2} +  {y}^{2}  - 1 = 2y

\rm :\longmapsto\: {x}^{2} +  {y}^{2} - 2y  - 1 = 0

Hence, Proved

Similar questions