Math, asked by khgaty8890, 8 months ago

A variable straight line through the point
of intersection of the two lines x/3 + y/2 = 1
and x/2 +y/3= 1 meets the co-ordinate
axes at A and B. find the locus of
the middle point of AB.​

Answers

Answered by wwwjitendraarora1108
4

Answer:

a point of ab 3=1y2+ab answer

Answered by shadowsabers03
42

Given straight lines.

\longrightarrow \dfrac{x}{3}+\dfrac{y}{2}=1

\longrightarrow2x+3y-6=0

And,

\longrightarrow \dfrac{x}{2}+\dfrac{y}{3}=1

\longrightarrow3x+2y-6=0

Let the equation of the variable straight line through the point of intersection of the two given lines be,

\longrightarrow(2x+3y-6)+\lambda(3x+2y-6)=0

\longrightarrow2x+3y-6+3\lambda\,x+2\lambda\,y-6\lambda=0

\longrightarrow(2+3\lambda)x+(3+2\lambda)y-6(1+\lambda)=0

\longrightarrow(2+3\lambda)x+(3+2\lambda)y=6(1+\lambda)

\longrightarrow\dfrac{(2+3\lambda)x}{6(1+\lambda)}+\dfrac{(3+2\lambda)y}{6(1+\lambda)}=1

\longrightarrow\dfrac{x}{\left(\dfrac{6(1+\lambda)}{2+3\lambda}\right)}+\dfrac{y}{\left(\dfrac{6(1+\lambda)}{3+2\lambda}\right)}=1

Now the equation is in intercept form, from which we can assume that,

\longrightarrow A=\left(\dfrac{6(1+\lambda)}{2+3\lambda},\ 0\right)

\longrightarrow B=\left(0,\ \dfrac{6(1+\lambda)}{3+2\lambda}\right)

since A and B are intercepts.

Then midpoint of AB is,

\longrightarrow C=\left(\dfrac{\dfrac{6(1+\lambda)}{2+3\lambda}+0}{2},\ \dfrac{0+\dfrac{6(1+\lambda)}{3+2\lambda}}{2}\right)

\longrightarrow C=\left(\dfrac{3(1+\lambda)}{2+3\lambda},\ \dfrac{3(1+\lambda)}{3+2\lambda}\right)

Let us find the locus of this point by taking C=(x,\ y), then we have,

\longrightarrow x=\dfrac{3(1+\lambda)}{2+3\lambda}

\longrightarrow 2x+3\lambda\ x=3+3\lambda

\longrightarrow3\lambda\ x-3\lambda=3-2x

\longrightarrow\lambda=\dfrac{3-2x}{3x-3}\quad\quad\dots(1)

And,

\longrightarrow y=\dfrac{3(1+\lambda)}{3+2\lambda}

From (1),

\longrightarrow y=\dfrac{3\left(1+\dfrac{3-2x}{3x-3}\right)}{3+2\left(\dfrac{3-2x}{3x-3}\right)}

\longrightarrow y=\dfrac{\left(\dfrac{3x-3+3-2x}{x-1}\right)}{\dfrac{1}{3}\left(\dfrac{9x-9+6-4x}{x-1}\right)}

\longrightarrow y=\dfrac{3x}{5x-3}

\longrightarrow\underline{\underline{5xy-3y-3x=0}}

Similar questions