Physics, asked by shikharagarwal7096, 11 months ago

A vector of magnitude 100 N is inclined at angle of 30° to another vector of magnitude 50 N . Calculate the magnitude for cross product and dot product of two vectors

Answers

Answered by Anonymous
29

Given :

▪ Manitude of vector A = 100N

▪ Magnitude of vector B = 50N

▪ Angle b/w A and B = 30°

To Find :

❄ Magnitude of dot product and cross product.

Formula :

Dot product of two vectors :

\bigstar\:\underline{\boxed{\bf{\red{\vec{A}\:{\tiny{\bullet}}\:\vec{B}=|\vec{A}| |\vec{B}|\cos\theta=AB\cos\theta }}}}

Cross product of two vectors :

\bigstar\:\underline{\boxed{\bf{\blue{\vec{A}\times\vec{B}=AB\sin\theta\:\hat{n}}}}}

\hat{n} = unit vector (perpendicular to the plane of vectors A and B)

Calculation :

Dot product :

\dashrightarrow\sf\:\vec{A}\:{\tiny{\bullet}}\:\vec{B}=AB\cos\theta\\ \\ \dashrightarrow\sf\:\vec{A}\:{\tiny{\bullet}}\:\vec{B}=(100)(50)\cos30\degree\\ \\ \dashrightarrow\sf\:\vec{A}\:{\tiny{\bullet}}\:\vec{B}=5000\times \dfrac{\sqrt{3}}{2}\\ \\ \dashrightarrow\underline{\boxed{\bf{\green{\vec{A}\:{\tiny{\bullet}}\:\vec{B}=2500\sqrt{3}\:N}}}}\:\orange{\bigstar}

Cross product :

\implies\sf\:\vec{A}\times \vec{B}=AB\sin\theta\:\hat{n}\\ \\ \implies\sf\:\vec{A}\times \vec{B}=(100)(50)\sin30\degree\:\hat{n}\\ \\ \implies\sf\:\vec{A}\times\vec{B}=5000\times\dfrac{1}{2}\:\hat{n}\\ \\ \implies\underline{\boxed{\bf{\purple{\vec{A}\times\vec{B}=2500\:N\:\hat{n}}}}}\:\gray{\bigstar}

Answered by naveenjai2004
2

Answer:

find the attachment

pls mark as brainliest   *_*

Attachments:
Similar questions