Physics, asked by Charit4831, 6 months ago

A vector perpendicular to the vector (i+2j) and having magnitude 3root5

Answers

Answered by BrainlyPopularman
59

GIVEN :

• A vector perpendicular to the vector (i+2j).

• Magnitude of vector is 3√5 .

TO FIND :

• Vector = ?

SOLUTION :

• Let a vector →   \:  \:  \bf x  \: \hat{i} \:  +  \: y \: \hat{j}

▪︎According to the first condition –

• We know that if two vectors   \bf  \overrightarrow{P} and   \bf  \overrightarrow{Q} are perpendicular then –

  \\  \large \implies{ \boxed{\bf\overrightarrow{P}. \overrightarrow{Q}= 0}}\\

• So that –

 \\\implies \bf (x  \: \hat{i} \:  +  \: y \: \hat{j}).(\: \hat{i} \:  +  \: 2\:\hat{j})  = 0\\

 \\\implies \bf x + 2y= 0 \:  \:  \:  \:  -  -  -  - eq.(1)\\

• According to the second condition –

 \\\implies \bf Magnitude \:  \: of \:  \: vector = 3 \sqrt{5} \\

 \\\implies \bf  |x  \: \hat{i} \:  +  \: y \: \hat{j}| = 3 \sqrt{5} \\

 \\\implies \bf \sqrt{ {x}^{2} +  {y}^{2}  } = 3 \sqrt{5} \\

 \\\implies \bf (\sqrt{ {x}^{2} +  {y}^{2}})^{2}  = (3 \sqrt{5})^{2} \\

 \\\implies \bf {x}^{2} +  {y}^{2}=9 \times 5\\

 \\\implies \bf {x}^{2} +  {y}^{2}=45\\

• Using eq.(1) –

 \\\implies \bf {( - 2y)}^{2} +  {y}^{2}=45\\

 \\\implies \bf 4{y}^{2} +  {y}^{2}=45\\

 \\\implies \bf 5{y}^{2}=45\\

 \\\implies \bf {y}^{2}=9\\

 \\\implies \large{ \boxed{ \bf y= \pm3}}\\

• And –

 \\\implies \large{ \boxed{ \bf x= \mp6}}\\

• Hence , The vector equation –

  \\  \implies  \bf\:  \:Vector =6 \: \hat{i} \:   -  \: 3\: \hat{j} \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  - 6 \: \hat{i} \:  +  \: 3\: \hat{j}\\

Similar questions