Physics, asked by HardikSharma2877, 1 year ago

A vehicle of mass 500 kg moving with a velocity of 20m/s on a straight , horizontal road comes to rest in a distance of 100 m after the fuel is cut off. Find the coefficient of kinetic friction between the tyres of the vehicle & the road

Answers

Answered by shadowsabers03
5

Here,

\displaystyle\longrightarrow\sf {m=500\ kg}

\displaystyle\longrightarrow\sf {u=20\ m\ s^{-1}}

\displaystyle\longrightarrow\sf {v=0\ m\ s^{-1}}

\displaystyle\longrightarrow\sf{s=100\ m}

The retardation exerted on the vehicle, by third kinematic equation,

\displaystyle\longrightarrow\sf {a=\dfrac {v^2-u^2}{2s}}

\displaystyle\longrightarrow\sf{a=\dfrac {0^2-20^2}{2\times 100}}

\displaystyle\longrightarrow\sf {a=-2\ m\ s^{-2}}

Then, the frictional force acting on the vehicle,

\displaystyle\longrightarrow\sf {f=ma}

\displaystyle\longrightarrow\sf {f=500\times-2}

\displaystyle\longrightarrow\sf {\underline {\underline {f=-1000\ N}}}

\displaystyle\longrightarrow\sf {\underline {\underline {f=-1\ kN}}}

Similar questions