Physics, asked by doddagabharathi, 1 month ago

A Vehicle starts at A with a speed of 20 km/hr and reaches B. then the vehicle returns to starting point A on the same path with a speed of 80 km/hr. What is the average speed.

PLEASE TELL IT IS URGENT DONT SPAM I WILL MARK YOU AS A BRAINLIST PLEASE... TELL IT IS URGENT ​​​

Answers

Answered by Sayantana
3

Average speed

\implies\rm V_{av} = \dfrac{ Total\:  distance}{Total\: time}

Distance : Actual path travelled by object.

Solution:

\implies\rm V_{av} = \dfrac{ AB+BA}{t_1 + t_2}

\implies\rm V_{av} = \dfrac{ x + x}{\dfrac{x}{v_1} + \dfrac{x}{v_2}}

\implies\rm V_{av} = \dfrac{ 2x}{\dfrac{x}{v_1} + \dfrac{x}{v_2}}

\implies\rm V_{av} = \dfrac{ 2}{\dfrac{1}{v_1} + \dfrac{1}{v_2}}

\implies\rm V_{av} = \dfrac{2}{\dfrac{v_1 +v_2}{v_1v_2}}

\implies\rm V_{av} = \dfrac{2v_1v_2}{v_1 +v_2}

\implies\rm V_{av} = \dfrac{2\times 20\times 80}{20+80 }

\implies\rm V_{av} = \dfrac{3200}{100}

\implies\bf V_{av} = 32\: kmh^{-1}

---------------

Attachments:

rsagnik437: Amazing ! :)
Answered by MuskanJoshi14
0

Explanation:

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{VERIFIED✔}}}

Average speed

\implies\rm V_{av} = \dfrac{ Total\:  distance}{Total\: time}

Distance : Actual path travelled by object.

Solution:

\implies\rm V_{av} = \dfrac{ AB+BA}{t_1 + t_2}

\implies\rm V_{av} = \dfrac{ x + x}{\dfrac{x}{v_1} + \dfrac{x}{v_2}}

\implies\rm V_{av} = \dfrac{ 2x}{\dfrac{x}{v_1} + \dfrac{x}{v_2}}

\implies\rm V_{av} = \dfrac{ 2}{\dfrac{1}{v_1} + \dfrac{1}{v_2}}

\implies\rm V_{av} = \dfrac{2}{\dfrac{v_1 +v_2}{v_1v_2}}

\implies\rm V_{av} = \dfrac{2v_1v_2}{v_1 +v_2}

\implies\rm V_{av} = \dfrac{2\times 20\times 80}{20+80 }

\implies\rm V_{av} = \dfrac{3200}{100}

\implies\bf V_{av} = 32\: kmh^{-1}

---------------

 \pink{\boxed{I \:Hope\: it's \:Helpful}}

{\sf{\bf{\blue{@Muskanjoshi14࿐}}}}

Attachments:
Similar questions