Physics, asked by DNYANEAHWRI2665, 1 year ago

A vertical metal cylinder of radius 2 cm and length 2 m is fixed at the lower end and a load of 100 kg is put on it. Find (a) the stress (b) the strain and (c) the compression of the cylinder. Young modulus of the metal = 2 × 1011 N m−2.

Answers

Answered by rani76418910
6

Conclusion:

Stress = 7.8 \times 10^{5}\frac{N}{m^{2}}

Strain =3.9\times 10^{-6}

Compression  = 7.8 \times 10^{-6} meter

Explanation:

Given that, Radius of the cylinder r =\textrm{2 cm} = 2\times 10^{-2} meter

                  Length of the cylinder l =\textrm{2 m}

                  Load  m = \textrm{100 kg}

Now we have to find out the Area and Force for results

Area A = \pi r^{2} = 4\pi \times10^{-4}  m^{2}

                 Force F = mg = 100 \times 9.8

             ⇒F =\textrm980 Netwon

As we know that, Stress =\frac{Force}{Area}

                           1.  Stress =\dfrac{980}{4\pi \times10^{-4}}

                             Stress =\frac{2450000}{\pi} = 7.8 \times 10^{5}

                           2.  \textrm{Young Modulus} = \frac{Stress}{Strain}

                              2\times 10^{11} =\frac{7.8\times 10^{5}}{Strain}

                             Strain =\frac{7.8 \times 10^{5}}{2 \times 10^{11}}

                           Strain = 3.9\times 10^{-6}

                        3. Strain =\frac{\textrm{Change in length}}{\textrm{Original length}}

                        \textrm {Change in length} = 3.9\times10^{-6} \times 2

            ⇒ Change in length = 7.8\times 10^{-6} meter

Answered by dk6060805
1

Stress is Proportional to Strain

Explanation:

Length of the cylinder L = 2 m  

Area of cross-section A = \pi \times r^2 = \pi (\frac {2}{100})^2m^2

= \frac {4\times \pi}{10000} m^2  

Force on the cylinder F = 100\times 10 N = 1000 N  

Hence the stress = \frac {F}{A} = \frac {1000}{(4\pi)} / (10000) N/m^2

= (\frac {1}{4\pi})\times 10^7 N/m²  

= 0.0796 \times 10^7 N/m²  

= 7.96 \times 10^5 N/m²    

(b) Strain = \frac {Stress}{Y} = F/A/Y

= \frac {7.96 \times 10^5}{2.0 \times 10^1^1}

= 3.98 \times 10^-^6  = 4 \times 10^-^6    

(c) Let the compression of the cylinder = l m  

The strain =\frac {l}{L} = \frac {l}{2}

4 \times 10^-^6 = \frac {l}{2}

l = 8 \times 10^-^6 m

Similar questions